您的位置:首页 > 房产 > 家装 > 2021好心人给个开车的网站_沃尔玛网上商城官网_百度seo哪家公司好_网络推广网站排名

2021好心人给个开车的网站_沃尔玛网上商城官网_百度seo哪家公司好_网络推广网站排名

2025/1/10 6:33:20 来源:https://blog.csdn.net/qq_58860480/article/details/145011095  浏览:    关键词:2021好心人给个开车的网站_沃尔玛网上商城官网_百度seo哪家公司好_网络推广网站排名
2021好心人给个开车的网站_沃尔玛网上商城官网_百度seo哪家公司好_网络推广网站排名

矩母函数(MGF)简介

矩母函数(Moment Generating Function,MGF)是概率统计中描述随机变量分布特征的重要工具。MGF的主要用途是通过导数来计算随机变量的矩(比如均值、方差等),同时它也能帮助确定随机变量的分布。

定义

对于随机变量 X X X,其矩母函数 M X ( t ) M_X(t) MX(t) 定义为:

M X ( t ) = E [ e t X ] = ∫ − ∞ ∞ e t x f X ( x ) d x M_X(t) = \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx MX(t)=E[etX]=etxfX(x)dx

  • t t t 是实数;
  • f X ( x ) f_X(x) fX(x) 是随机变量 X X X 的概率密度函数(对于离散分布,积分换成求和)。

矩母函数在 t = 0 t=0 t=0 的值总是 1,即 M X ( 0 ) = 1 M_X(0) = 1 MX(0)=1

性质
  1. 矩的生成:随机变量的 n n n 阶原点矩可由 M X ( t ) M_X(t) MX(t) n n n 阶导数得到:
    E [ X n ] = M X ( n ) ( 0 ) \mathbb{E}[X^n] = M_X^{(n)}(0) E[Xn]=MX(n)(0)
    即在 t = 0 t=0 t=0 处对 t t t n n n 阶导数。

  2. 分布唯一性:如果两个随机变量 X X X Y Y Y 的矩母函数在某个区间内一致,则它们具有相同的分布。

  3. 独立性:如果 X X X Y Y Y 独立,则 Z = X + Y Z = X + Y Z=X+Y 的矩母函数是 X X X Y Y Y 的矩母函数的乘积:
    M Z ( t ) = M X ( t ) ⋅ M Y ( t ) M_Z(t) = M_X(t) \cdot M_Y(t) MZ(t)=MX(t)MY(t)


例子:指数分布的矩母函数

1. 指数分布定义

假设随机变量 X X X 遵循参数为 λ > 0 \lambda > 0 λ>0 的指数分布,其概率密度函数为:
f X ( x ) = λ e − λ x , x ≥ 0 f_X(x) = \lambda e^{-\lambda x}, \quad x \geq 0 fX(x)=λeλx,x0

2. 矩母函数计算

根据矩母函数的定义:
M X ( t ) = E [ e t X ] = ∫ 0 ∞ e t x ⋅ λ e − λ x d x M_X(t) = \mathbb{E}[e^{tX}] = \int_{0}^{\infty} e^{tx} \cdot \lambda e^{-\lambda x} dx MX(t)=E[etX]=0etxλeλxdx

合并指数项 e t x ⋅ e − λ x = e − ( λ − t ) x e^{tx} \cdot e^{-\lambda x} = e^{-(\lambda - t)x} etxeλx=e(λt)x,得:
M X ( t ) = λ ∫ 0 ∞ e − ( λ − t ) x d x M_X(t) = \lambda \int_{0}^{\infty} e^{-(\lambda - t)x} dx MX(t)=λ0e(λt)xdx

积分结果为:
∫ 0 ∞ e − a x d x = 1 a , a > 0 \int_{0}^{\infty} e^{-ax} dx = \frac{1}{a}, \quad a > 0 0eaxdx=a1,a>0

因此,当 t < λ t < \lambda t<λ 时:
M X ( t ) = λ λ − t M_X(t) = \frac{\lambda}{\lambda - t} MX(t)=λtλ

而当 t ≥ λ t \geq \lambda tλ 时,积分发散,MGF 不存在。

3. 利用 MGF 计算均值和方差
  • 均值:随机变量的均值是矩母函数的导数在 t = 0 t = 0 t=0 处的值:
    E [ X ] = M X ′ ( 0 ) \mathbb{E}[X] = M_X'(0) E[X]=MX(0)
    M X ( t ) = λ λ − t M_X(t) = \frac{\lambda}{\lambda - t} MX(t)=λtλ 求导:
    M X ′ ( t ) = λ ( λ − t ) 2 M_X'(t) = \frac{\lambda}{(\lambda - t)^2} MX(t)=(λt)2λ
    t = 0 t = 0 t=0 时:
    M X ′ ( 0 ) = λ λ 2 = 1 λ M_X'(0) = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda} MX(0)=λ2λ=λ1
    所以,均值 E [ X ] = 1 λ \mathbb{E}[X] = \frac{1}{\lambda} E[X]=λ1

  • 方差:随机变量的方差可以由 E [ X 2 ] − ( E [ X ] ) 2 \mathbb{E}[X^2] - (\mathbb{E}[X])^2 E[X2](E[X])2 得到,而 E [ X 2 ] = M X ′ ′ ( 0 ) \mathbb{E}[X^2] = M_X''(0) E[X2]=MX′′(0)。对 M X ′ ( t ) M_X'(t) MX(t) 再求导:
    M X ′ ′ ( t ) = 2 λ ( λ − t ) 3 M_X''(t) = \frac{2\lambda}{(\lambda - t)^3} MX′′(t)=(λt)32λ
    t = 0 t = 0 t=0 时:
    M X ′ ′ ( 0 ) = 2 λ λ 3 = 2 λ 2 M_X''(0) = \frac{2\lambda}{\lambda^3} = \frac{2}{\lambda^2} MX′′(0)=λ32λ=λ22
    所以:
    方差 Var ( X ) = E [ X 2 ] − ( E [ X ] ) 2 = 2 λ 2 − ( 1 λ ) 2 = 1 λ 2 \text{方差 } \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2} 方差 Var(X)=E[X2](E[X])2=λ22(λ1)2=λ21


总结

矩母函数是分析随机变量特性的重要工具,其计算遵循积分定义。通过矩母函数,能有效推导随机变量的均值、方差及高阶矩等信息。在实际应用中,掌握如何从分布定义出发计算 MGF 是关键步骤。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com