您的位置:首页 > 房产 > 建筑 > 成立公司要多少钱_工地模板图片大全_网课培训机构排名前十_指数平滑法

成立公司要多少钱_工地模板图片大全_网课培训机构排名前十_指数平滑法

2025/1/8 13:24:09 来源:https://blog.csdn.net/weixin_42269028/article/details/144801158  浏览:    关键词:成立公司要多少钱_工地模板图片大全_网课培训机构排名前十_指数平滑法
成立公司要多少钱_工地模板图片大全_网课培训机构排名前十_指数平滑法

文章目录

  • sklearn学习(25) 无监督学习-神经网络模型(无监督)
    • 25.1 限制波尔兹曼机
      • 25.1.1 图形模型和参数化
      • 25.1.2 伯努利限制玻尔兹曼机
      • 25.1.3 随机最大似然学习

sklearn学习(25) 无监督学习-神经网络模型(无监督)

文章参考网站:
https://sklearn.apachecn.org/

https://scikit-learn.org/stable/

25.1 限制波尔兹曼机

限制玻尔兹曼机(Restricted Boltzmann machines,简称 RBM)是基于概率模型的无监督非线性特征学习器。当用 RBM 或多层次结构的RBMs 提取的特征在馈入线性分类器(如线性支持向量机或感知机)时通常会获得良好的结果。

该模型对输入的分布作出假设。目前,scikit-learn 只提供了 BernoulliRBM,它假定输入是二值(binary values)的,或者是 0 到 1 之间的值,每个值都编码特定特征被激活的概率。

RBM 尝试使用特定图形模型最大化数据的似然。它所使用的参数学习算法(随机最大似然)可以防止特征表示偏离输入数据。这使得它能捕获到有趣的特征,但使得该模型对于小数据集和密度估计不太有效。

该方法在初始化具有独立 RBM 权值的深度神经网络时得到了广泛的应用。这种方法是无监督的预训练。

http://sklearn.apachecn.org/cn/0.19.0/_images/sphx_glr_plot_rbm_logistic_classification_0011.png

示例

  • Restricted Boltzmann Machine features for digit classification

25.1.1 图形模型和参数化

RBM 的图形模型是一个全连接的二分图。

http://sklearn.apachecn.org/cn/0.19.0/_images/rbm_graph.png

节点是随机变量,其状态取决于它连接到的其他节点的状态。这个模型可通过连接的权重、以及每个可见或隐藏单元的偏置项进行参数化,为了简单起见,我们省略了上图中的偏置项。

用能量函数衡量联合概率分布的质量:
E ( v , h ) = − ∑ i ∑ j w i j v i h j − ∑ i b i v i − ∑ j c j h j E(\mathbf{v}, \mathbf{h}) = -\sum_i \sum_j w_{ij}v_ih_j - \sum_i b_iv_i - \sum_j c_jh_j E(v,h)=ijwijvihjibivijcjhj

在上面的公式中, b \mathbf{b} b c \mathbf{c} c 分别是可见层和隐藏层的偏置向量。模型的联合概率是根据能量来定义的:
P ( v , h ) = e − E ( v , h ) Z P(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{Z} P(v,h)=ZeE(v,h)
“限制”是指模型的二分图结构,它禁止隐藏单元之间或可见单元之间的直接交互。 这代表以下条件独立性成立:
h i ⊥ h j ∣ v v i ⊥ v j ∣ h h_i \bot h_j | \mathbf{v} \\ v_i \bot v_j | \mathbf{h} hihjvvivjh
二分图结构允许使用高效的块吉比斯采样(block Gibbs sampling)进行推断。

25.1.2 伯努利限制玻尔兹曼机

BernoulliRBM 中,所有单位都是二进制随机单元。这意味着输入数据应该是二值,或者是在 0 和 1 之间的实数值,其表示可见单元活跃或不活跃的概率。 这是一个很好的字符识别模型,其中的关注点是哪些像素是活跃的,哪些不是。 对于自然场景的图像,它因为背景、深度和相邻像素趋势取相同的值而不再适合。

每个单位的条件概率分布由其接收的输入的 logistic sigmoid函数给出:
P ( v i = 1 ∣ h ) = σ ( ∑ j w i j h j + b i ) P ( h i = 1 ∣ v ) = σ ( ∑ i w i j v i + c j ) P(v_i=1|\mathbf{h}) = \sigma(\sum_j w_{ij}h_j + b_i) \\P(h_i=1|\mathbf{v}) = \sigma(\sum_i w_{ij}v_i + c_j) P(vi=1∣h)=σ(jwijhj+bi)P(hi=1∣v)=σ(iwijvi+cj)
其中 σ \sigma σ 是 logistic sigmoid函数:
σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1

25.1.3 随机最大似然学习

BernoulliRBM 函数中实现的训练算法被称为随机最大似然(SML)或持续对比发散(PCD)。由于数据的似然函数的形式,直接优化最大似然是不可行的:
log ⁡ P ( v ) = log ⁡ ∑ h e − E ( v , h ) − log ⁡ ∑ x , y e − E ( x , y ) \log P(v) = \log \sum_h e^{-E(v, h)} - \log \sum_{x, y} e^{-E(x, y)} logP(v)=logheE(v,h)logx,yeE(x,y)
为了简单起见,上面的等式是针对单个训练样本所写的。相对于权重的梯度由对应于上述的两个项构成。根据它们的符号,它们通常被称为正梯度和负梯度。这种实现按照小批量样本对梯度进行计算。

在最大化对数似然度(maximizing the log-likelihood)的情况下,正梯度使模型更倾向于与观察到的训练数据兼容的隐藏状态。RBM 的二分体结构使他可以被高效地计算。然而,负梯度是棘手的。其目标是降低模型偏好的联合状态的能量,从而使数据保持真实。它可以使用块吉比斯采样通过马尔可夫链蒙特卡罗来粗略估计,它通过迭代地对每个 v v v h h h 进行交互采样,直到链混合。以这种方式产生的样本有时被称为幻想粒子。这是低效的,并且我们很难确定马可夫链是否混合。

对比发散方法建议在经过少量迭代后停止链,迭代数 k k k 通常为 1。该方法快速且方差小,但样本远离模型分布。

持续对比发散解决了这个问题。在 PCD 中,我们保留了多个链(幻想粒子)来在每个权重更新之后更新 k k k 个吉比斯采样步骤,而不是每次需要梯度时都启动一个新的链,并且只执行一个吉比斯采样步骤。这使得粒子能更彻底地探索空间。

参考资料

“A fast learning algorithm for deep belief nets” G. Hinton, S. Osindero, Y.-W. Teh, 2006

“Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient” T. Tieleman, 2008

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com