前言
在《如何利用矩阵化简平面上的二次型曲线》这篇文章中,我们介绍了如何利用转轴和移轴矩阵来化简平面上的二次型曲线,从而确定曲线的类型,形状和位置。一个很自然的问题是,我们是否有办法不通过转轴移轴,而是直接通过二次曲线方程的系数,来判断曲线的类型和形状。解决这个问题的思路是,如果我们能找到一些以二次曲线方程系数为变量的函数,这些函数在转轴和移轴下,函数值不变,那么我们就能通过这些函数确定变换前后曲线方程系数之间的关系,进而通过原方程的系数直接来判断曲线的类型和形状。本文将介绍这个方法。
(下文将沿用《如何利用矩阵化简平面上的二次型曲线》这篇文章中的记号和定义)
二次曲线的不变量
沿着上面的思路,我们首先定义不变量:
F ( x , y ) = a 11 x 2 + 2 a 12 x y + a 22 y 2 + 2 a 1 x + 2 a 2 y + a 0 = 0 F(x,y)=a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0 F(x,y)=a11x2+2a12xy+a22y2+2a1x+2a2y+a0=0是平面上的一个二次曲线。设 f f f是二次曲线方程系数 a 11 , a 22 , a 12 , a 1 , a 2 , a 0 a_{11},a_{22},a_{12},a_{1},a_{2},a_{0} a11,a22,a12,a1,a2,a0的函数,若 f f f在任意直角坐标变换下的函数值不变,则称 f f f是二次曲线的(正交)不变量。
根据二次曲线的定义,我们接下来证明下面的命题:
对二次曲线 a 11 x 2 + 2 a 12 x y + a 22 y 2 + 2 a 1 x + 2 a 2 y + a 0 = 0 a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0 a11x2+2a12xy+a22y2+2a1x+2a2y+a0=0,构造如下系数函数:
I 1 = f 1 ( a 11 , a 22 ) = a 11 + a 22 = t r ( Ω ) I 2 = f 2 ( a 11 , a 22 , a 12 ) = ∣ a 11 a 12 a 12 a 22 ∣ = ∣ Ω ∣ I 3 = f 3 ( a 11 , a 22 , a 12 , a 1 , a 2 , a 0 ) = ∣ a 11 a 12 a 1 a 12 a 22 a 2 a 1 a 2 a 0 ∣ = ∣ Ω κ κ T a 0 ∣ I_1=f_{1}(a_{11},a_{22})=a_{11}+a_{22}=\mathrm{tr}(\boldsymbol{\Omega})\\ I_2=f_{2}(a_{11},a_{22},a_{12})=\begin{vmatrix}a_{11} & a_{12} \\ a_{12} & a_{22}\end{vmatrix}=|\boldsymbol{\Omega}|\\ I_3=f_{3}(a_{11},a_{22},a_{12},a_1,a_2,a_0)=\begin{vmatrix}a_{11} & a_{12} & a_1\\ a_{12} & a_{22} & a_2\\ a_1 & a_2 &a_0\end{vmatrix}=\begin{vmatrix} \boldsymbol{\Omega} & \boldsymbol{\kappa} \\ \boldsymbol{\kappa}^{\mathrm{T}} & a_0 \end{vmatrix} I1=f1(a11,a22)=a11+a22=tr(Ω)I2=f2(a11,a22,a12)= a11a12a12a22 =∣Ω∣I3=f3(a11,a22,a12,a1,a2,a0)= a11a12a1a12a22a2a1a2a0 = ΩκTκa0
则 I 1 , I 2 , I 3 I_1, I_2, I_3 I1,I2,I3都是二次曲线的不变量。
要证明上述命题,我们需要分两步进行,先证明它们是在转轴下的不变量,再证明它们在移轴下也是不变量。
转轴情况下的证明
根据《如何利用矩阵化简平面上的二次型曲线》这篇文章中的结论,对二次曲线做任意转轴
ζ = T ζ ′ \begin{equation} \boldsymbol{\zeta}=\boldsymbol{T} \boldsymbol{\zeta'} \end{equation} ζ=Tζ′
转轴后的曲线方程为:
( ζ ′ T , 1 ) ( T T Ω T T T κ κ T T a 0 ) ( ζ ′ 1 ) = 0 \begin{equation} (\boldsymbol{\zeta'}^{\mathrm{T}},1) \begin{pmatrix} \boldsymbol{T^{\mathrm{T}}} \boldsymbol{\Omega}\boldsymbol{T} & \boldsymbol{T^{\mathrm{T}}} \boldsymbol{\kappa} \\ \boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{T} & a_0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\zeta'} \\ 1 \end{pmatrix} =0 \end{equation} (ζ′T,1)(TTΩTκTTTTκa0)(ζ′1)=0
记转轴后的方程 ( 2 ) (2) (2)的系数函数分别为 I 1 ′ , I 2 ′ , I 3 ′ I'_{1}, I'_{2}, I'_{3} I1′,I2′,I3′。 I 1 ′ I'_{1} I1′恰好是二次项系数矩阵 T T Ω T \boldsymbol{T^{\mathrm{T}}} \boldsymbol{\Omega}\boldsymbol{T} TTΩT的迹,根据迹的交换律,我们可以得到:
I 1 ′ = a 11 ′ + a 22 ′ = t r ( T T Ω T ) = t r ( T T T Ω ) = t r ( Ω ) = a 11 + a 22 = I 1 \begin{equation} I'_{1}=a'_{11}+a'_{22}=\mathrm{tr}(\boldsymbol{T^{\mathrm{T}}} \boldsymbol{\Omega}\boldsymbol{T})=\mathrm{tr}(\boldsymbol{T}\boldsymbol{T^{\mathrm{T}}} \boldsymbol{\Omega})=\mathrm{tr}(\boldsymbol{\Omega})= a_{11}+a_{22}=I_{1} \end{equation} I1′=a11′+a22′=tr(TTΩT)=tr(TTTΩ)=tr(Ω)=a11+a22=I1
因此我们证明了 I 1 I_1 I1在转轴下不变。
由于 T \boldsymbol{T} T是正交矩阵,因此 ∣ T ∣ = 1 |\boldsymbol{T}|=1 ∣T∣=1,因此对于 I 2 ′ I'_2 I2′有:
I 2 ′ = ∣ T T Ω T ∣ = ∣ T T ∣ ∣ Ω ∣ ∣ T ∣ = ∣ Ω ∣ = I 2 \begin{equation} I'_2=|\boldsymbol{T^{\mathrm{T}}} \boldsymbol{\Omega}\boldsymbol{T}|=|\boldsymbol{T^{\mathrm{T}}}||\boldsymbol{\Omega}||\boldsymbol{T}|=|\boldsymbol{\Omega}|=I_2 \end{equation} I2′=∣TTΩT∣=∣TT∣∣Ω∣∣T∣=∣Ω∣=I2
因此 I 2 I_2 I2在转轴下不变。
对于 I 3 ′ I'_3 I3′有:
I 3 ′ = ∣ T T Ω T T T κ κ T T a 0 ∣ = ∣ ( T T 0 0 1 ) ( Ω κ κ T a 0 ) ( T 0 0 1 ) ∣ = ∣ T T ∣ I 3 ∣ T ∣ = I 3 \begin{equation} I'_3= \begin{vmatrix} \boldsymbol{T^{\mathrm{T}}} \boldsymbol{\Omega}\boldsymbol{T} & \boldsymbol{T^{\mathrm{T}}} \boldsymbol{\kappa} \\ \boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{T} & a_0 \end{vmatrix}=\left|\begin{pmatrix} \boldsymbol{T^{\mathrm{T}}} & \bold{0} \\ \bold{0} & 1\end{pmatrix} \begin{pmatrix} \boldsymbol{\Omega} & \boldsymbol{\kappa} \\ \boldsymbol{\kappa ^{\mathrm{T}}} & a_0 \end{pmatrix} \begin{pmatrix} \boldsymbol{T} & \bold{0} \\ \bold{0} & 1\end{pmatrix} \right|=|\boldsymbol{T^{\mathrm{T}}}|I_3|\boldsymbol{T}|=I_3 \end{equation} I3′= TTΩTκTTTTκa0 = (TT001)(ΩκTκa0)(T001) =∣TT∣I3∣T∣=I3
因此 I 3 I_3 I3在转轴下也不变。
综合上我们证明了, I 1 , I 2 , I 3 I_{1}, I_{2}, I_{3} I1,I2,I3在任意转轴下的值都不变。
移轴情况下的证明
对二次曲线做任意移轴 ζ = ζ ′ ′ + ζ ∗ , ζ ∗ = ( x ∗ , y ∗ ) T \boldsymbol{\zeta}= \boldsymbol{\zeta''}+ \boldsymbol{\zeta^*}, \boldsymbol{\zeta^*}=(x^*,y^*)^{\mathrm{T}} ζ=ζ′′+ζ∗,ζ∗=(x∗,y∗)T,则移轴后二次曲线方程为:
a 11 ( x ′ ′ + x ∗ ) 2 + 2 a 12 ( x ′ ′ + x ∗ ) ( y ′ ′ + y ∗ ) + a 22 ( y ′ ′ + y ∗ ) 2 + 2 a 1 ( x ′ ′ + x ∗ ) + 2 a 2 ( y ′ ′ + y ∗ ) + a 0 = 0 \begin{equation} a_{11}(x''+x^*)^2+2a_{12}(x''+x^*)(y''+y^*)+a_{22}(y''+y^*)^2+2a_1(x''+x^*)+2a_2(y''+y^*)+a_0=0 \end{equation} a11(x′′+x∗)2+2a12(x′′+x∗)(y′′+y∗)+a22(y′′+y∗)2+2a1(x′′+x∗)+2a2(y′′+y∗)+a0=0
容易发现上式的二次项系数仍然是 a 11 , a 12 , a 22 a_{11},a_{12},a_{22} a11,a12,a22,因此 I 1 , I 2 I_{1}, I_{2} I1,I2在转轴下保持不变。将上式改写成为矩阵的形式:
a 11 ( x ′ ′ + x ∗ ) 2 + 2 a 12 ( x ′ ′ + x ∗ ) ( y ′ ′ + y ∗ ) + a 22 ( y ′ ′ + y ∗ ) 2 + 2 a 1 ( x ′ ′ + x ∗ ) + 2 a 2 ( y ′ ′ + y ∗ ) + a 0 = ( ζ ′ ′ + ζ ∗ ) T Ω ( ζ ′ ′ + ζ ∗ ) + 2 κ T ( ζ ′ ′ + ζ ∗ ) + a 0 = ζ ′ ′ T Ω ζ ′ ′ + ζ ′ ′ T Ω ζ ∗ + ζ ∗ T Ω ζ ′ ′ + ζ ∗ T Ω ζ ∗ + 2 κ T ζ ′ ′ + 2 κ T ζ ∗ + a 0 = ζ ′ ′ T Ω ζ ′ ′ + ζ ∗ T Ω ζ ′ ′ + ζ ∗ T Ω ζ ′ ′ + ζ ∗ T Ω ζ ∗ + 2 κ T ζ ′ ′ + 2 κ T ζ ∗ + a 0 = ζ ′ ′ T Ω ζ ′ ′ + 2 ( ζ ∗ T Ω + κ T ) ζ ′ ′ + ( ζ ∗ T Ω ζ ∗ + 2 κ T ζ ∗ + a 0 ) \begin{equation} \begin{align} & \quad \space a_{11}(x''+x^*)^2+2a_{12}(x''+x^*)(y''+y^*)+a_{22}(y''+y^*)^2+2a_1(x''+x^*)+2a_2(y''+y^*)+a_0\nonumber \\ &=(\boldsymbol{\zeta''}+ \boldsymbol{\zeta^*})^{\mathrm{T}} \boldsymbol{\Omega}(\boldsymbol{\zeta''}+ \boldsymbol{\zeta^*})+2\boldsymbol{\kappa ^{\mathrm{T}}}(\boldsymbol{\zeta''}+ \boldsymbol{\zeta^*})+a_0\nonumber \\ &= \boldsymbol{\zeta''}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta''} + \boldsymbol{\zeta''}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta^*} + \boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta''} + \boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta^*} + 2\boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{\zeta''} + 2\boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{\zeta^*}+a_0 \nonumber \\ &= \boldsymbol{\zeta''}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta''} + \boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta''} + \boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta''} + \boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta^*} + 2\boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{\zeta''} + 2\boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{\zeta^*}+a_0 \nonumber \\ &= \boldsymbol{\zeta''}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta''} +2(\boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega}+\boldsymbol{\kappa ^{\mathrm{T}}})\boldsymbol{\zeta''}+(\boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta^*} + 2\boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{\zeta^*}+a_0)\nonumber \\ \end{align} \end{equation} a11(x′′+x∗)2+2a12(x′′+x∗)(y′′+y∗)+a22(y′′+y∗)2+2a1(x′′+x∗)+2a2(y′′+y∗)+a0=(ζ′′+ζ∗)TΩ(ζ′′+ζ∗)+2κT(ζ′′+ζ∗)+a0=ζ′′TΩζ′′+ζ′′TΩζ∗+ζ∗TΩζ′′+ζ∗TΩζ∗+2κTζ′′+2κTζ∗+a0=ζ′′TΩζ′′+ζ∗TΩζ′′+ζ∗TΩζ′′+ζ∗TΩζ∗+2κTζ′′+2κTζ∗+a0=ζ′′TΩζ′′+2(ζ∗TΩ+κT)ζ′′+(ζ∗TΩζ∗+2κTζ∗+a0)
根据 ( 7 ) (7) (7)式,得到移轴后的 I 3 ′ ′ I''_3 I3′′:
I 3 ′ = ∣ Ω Ω ζ ∗ + κ ζ ∗ T Ω + κ T ζ ∗ T Ω ζ ∗ + 2 κ T ζ ∗ + a 0 ∣ = ∣ ( I 0 ζ ∗ T 1 ) ( Ω κ κ T a 0 ) ( I ζ ∗ 0 1 ) ∣ = I 3 \begin{equation} I'_3= \begin{vmatrix} \boldsymbol{\Omega} & \boldsymbol{\Omega} \boldsymbol{\zeta^*} +\boldsymbol{\kappa } \\ \boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega}+\boldsymbol{\kappa ^{\mathrm{T}}} & \boldsymbol{\zeta^*}^{\mathrm{T}} \boldsymbol{\Omega} \boldsymbol{\zeta^*} + 2\boldsymbol{\kappa ^{\mathrm{T}}} \boldsymbol{\zeta^*}+a_0 \end{vmatrix}= \left|\begin{pmatrix} \boldsymbol{I} & \bold{0} \\ \boldsymbol{\zeta^*}^{\mathrm{T}} & 1\end{pmatrix} \begin{pmatrix} \boldsymbol{\Omega} & \boldsymbol{\kappa} \\ \boldsymbol{\kappa ^{\mathrm{T}}} & a_0 \end{pmatrix} \begin{pmatrix} \boldsymbol{I} & \boldsymbol{\zeta^*} \\ \bold{0} & 1\end{pmatrix} \right|=I_3 \end{equation} I3′= Ωζ∗TΩ+κTΩζ∗+κζ∗TΩζ∗+2κTζ∗+a0 = (Iζ∗T01)(ΩκTκa0)(I0ζ∗1) =I3
因此 I 3 I_3 I3在转轴下也不变。
综上,我们证明了 I 1 , I 2 , I 3 I_{1}, I_{2}, I_{3} I1,I2,I3都是二次曲线的不变量。
二次曲线的半不变量
根据《如何利用矩阵化简平面上的二次型曲线》这篇文章中的定义, I 3 I_3 I3是多项式 F ( x , y ) F(x,y) F(x,y)的系数矩阵 C = ( Ω κ κ T a 0 ) \boldsymbol{C}=\begin{pmatrix} \boldsymbol{\Omega} & \boldsymbol{\kappa} \\ \boldsymbol{\kappa}^{\mathrm{T}} & a_0 \end{pmatrix} C=(ΩκTκa0)的行列式,而 I 2 I_2 I2恰好是 I 3 I_3 I3的一个二阶主子式 A ( 1 2 1 2 ) \bold{A}\begin{pmatrix} 1& 2 \\ 1 & 2\end{pmatrix} A(1122),它恰好也是二次曲线的不变量。对于 I 3 I_3 I3的另外两个二阶主子式 A ( 1 3 1 3 ) = ∣ a 11 a 1 a 1 a 0 ∣ \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix}=\begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix} A(1133)= a11a1a1a0 以及 A ( 2 3 2 3 ) = ∣ a 22 a 2 a 2 a 0 ∣ \bold{A}\begin{pmatrix} 2& 3 \\ 2 & 3\end{pmatrix}=\begin{vmatrix} a_{22} & a_2 \\ a_2 & a_0 \end{vmatrix} A(2233)= a22a2a2a0 ,它们在转轴与移轴中会发生什么变化?事实上,我们有如下命题:
对二次曲线 a 11 x 2 + 2 a 12 x y + a 22 y 2 + 2 a 1 x + 2 a 2 y + a 0 = 0 a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0 a11x2+2a12xy+a22y2+2a1x+2a2y+a0=0,定义K_1为 I 3 I_3 I3除了 I 2 I_2 I2剩下另外两个二阶主子式的和:
K 1 = A ( 1 3 1 3 ) + A ( 2 3 2 3 ) = ∣ a 11 a 1 a 1 a 0 ∣ + ∣ a 22 a 2 a 2 a 0 ∣ K_1=\bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix}+\bold{A}\begin{pmatrix} 2& 3 \\ 2 & 3\end{pmatrix}=\begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix}+\begin{vmatrix} a_{22} & a_2 \\ a_2 & a_0 \end{vmatrix} K1=A(1133)+A(2233)= a11a1a1a0 + a22a2a2a0
则称 K 1 K_1 K1为二次曲线的半不变量,其在转轴下不变;且对于 I 2 = I 3 = 0 I_2=I_3=0 I2=I3=0的二次曲线, K 1 K_1 K1在移轴下也不变。
同样,我们分别在转轴和移轴情况下进行证明。
转轴情况下的证明
同样对二次曲线做任意转轴 ζ = T ζ ′ \boldsymbol{\zeta}=\boldsymbol{T} \boldsymbol{\zeta'} ζ=Tζ′,得到 ( 2 ) (2) (2)式,此时 κ ′ = T T κ \boldsymbol{\kappa}'=\boldsymbol{T^{\mathrm{T}}} \boldsymbol{\kappa} κ′=TTκ。写出转轴后曲线的半不变量:
K 1 ′ = ∣ a 11 ′ a 1 ′ a 1 ′ a 0 ∣ + ∣ a 22 ′ a 2 ′ a 2 ′ a 0 ∣ = ( a 11 ′ + a 22 ′ ) a 0 − ( a 1 ′ 2 + a 2 ′ 2 ) = I 1 ′ a 0 − κ ′ T κ ′ = I 1 a 0 − ( T T κ ) T ( T T κ ) = I 1 a 0 − κ T T T T κ = I 1 a 0 − ( a 1 2 + a 2 2 ) = K 1 \begin{equation} \begin{align} K'_1&=\begin{vmatrix} a'_{11} & a'_1 \\ a'_1 & a_0 \end{vmatrix}+\begin{vmatrix} a'_{22} & a'_2 \\ a'_2 & a_0 \end{vmatrix}\nonumber \\ &=(a'_{11} +a'_{22})a_0-(a'^2_1+a'^2_2) \nonumber \\ &=I'_1a_0-\boldsymbol{\kappa}'^{\mathrm{T}}\boldsymbol{\kappa}'\nonumber \\ &= I_1a_0-(\boldsymbol{T^{\mathrm{T}}} \boldsymbol{\kappa})^{\mathrm{T}}(\boldsymbol{T^{\mathrm{T}}} \boldsymbol{\kappa}) \nonumber \\ &= I_1a_0-\boldsymbol{\kappa}^{\mathrm{T}}\boldsymbol{T}\boldsymbol{T^{\mathrm{T}}} \boldsymbol{\kappa}\nonumber \\ &= I_1a_0-(a^2_1+a^2_2)=K_1\nonumber \\ \end{align} \end{equation} K1′= a11′a1′a1′a0 + a22′a2′a2′a0 =(a11′+a22′)a0−(a1′2+a2′2)=I1′a0−κ′Tκ′=I1a0−(TTκ)T(TTκ)=I1a0−κTTTTκ=I1a0−(a12+a22)=K1
因此 K 1 K_1 K1在转轴下不变。
对于 I 2 = I 3 = 0 I_2=I_3=0 I2=I3=0的二次曲线在移轴情况下的证明
由 I 2 = 0 I_2=0 I2=0,得到 a 11 a 22 = a 12 2 a_{11}a_{22}=a^2_{12} a11a22=a122。由二次曲线的定义, a 11 a_{11} a11与 a 22 a_{22} a22至少有一个不为零,不妨设 a 22 ≠ 0 a_{22}\neq 0 a22=0。若 a 11 , a 12 a_{11},a_{12} a11,a12都不为零,两边除以 a 12 , a 22 a_{12}, a_{22} a12,a22得到:
a 11 a 12 = a 12 a 22 = k ≠ 0 \begin{equation} \dfrac{a_{11}}{a_{12}}=\dfrac{a_{12}}{a_{22}}=k\neq 0 \end{equation} a12a11=a22a12=k=0
此时 I 3 I_3 I3可以写为
I 3 = ∣ a 11 a 12 a 1 a 12 a 22 a 2 a 1 a 2 a 0 ∣ = ∣ k a 12 k a 22 a 1 a 12 a 22 a 2 a 1 a 2 a 0 ∣ = ∣ 0 0 a 1 − k a 2 a 12 a 22 a 2 a 1 a 2 a 0 ∣ = ( a 1 − k a 2 ) ∣ k a 22 a 22 a 1 a 2 ∣ = ( a 1 − k a 2 ) ∣ 0 a 22 a 1 − k a 2 a 2 ∣ = − a 22 ( a 1 − k a 2 ) 2 = 0 \begin{equation} \begin{align} I_3&=\begin{vmatrix} a_{11} & a_{12} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{vmatrix} =\begin{vmatrix} ka_{12} & ka_{22} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{vmatrix}=\begin{vmatrix} 0 & 0 & a_1-ka_2 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{vmatrix} \nonumber \\ &=(a_1-ka_2)\begin{vmatrix} ka_{22} &a_{22} \\ a_1 & a_2 \end{vmatrix} =(a_1-ka_2)\begin{vmatrix} 0 &a_{22} \\ a_1-ka_2 & a_2 \end{vmatrix} \nonumber \\ &=-a_{22}(a_1-ka_2)^2 =0\nonumber \\ \end{align} \end{equation} I3= a11a12a1a12a22a2a1a2a0 = ka12a12a1ka22a22a2a1a2a0 = 0a12a10a22a2a1−ka2a2a0 =(a1−ka2) ka22a1a22a2 =(a1−ka2) 0a1−ka2a22a2 =−a22(a1−ka2)2=0
因为 I 3 = 0 I_3=0 I3=0且 a 22 ≠ 0 a_{22}\neq 0 a22=0,所以 a 1 − k a 2 = 0 a_1-ka_2=0 a1−ka2=0,结合 ( 10 ) (10) (10)式有:
a 11 a 12 = a 12 a 22 = a 1 a 2 = k ≠ 0 \begin{equation} \dfrac{a_{11}}{a_{12}}=\dfrac{a_{12}}{a_{22}}=\dfrac{a_{1}}{a_{2}}=k\neq 0 \end{equation} a12a11=a22a12=a2a1=k=0
对二次曲线做任意移轴 ζ = ζ ′ ′ + ζ ∗ \boldsymbol{\zeta}= \boldsymbol{\zeta''}+ \boldsymbol{\zeta^*} ζ=ζ′′+ζ∗,根据 ( 6 ) (6) (6)式写出 A ( 1 3 1 3 ) \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix} A(1133):
A ( 1 3 1 3 ) = ∣ a 11 ′ ′ a 1 ′ ′ a 1 ′ ′ a 0 ′ ′ ∣ = ∣ a 11 a 11 x ∗ + a 12 y ∗ + a 1 a 11 x ∗ + a 12 y ∗ + a 1 a 11 x ∗ 2 + 2 a 12 x ∗ y ∗ + a 22 y ∗ 2 + 2 a 1 x ∗ + 2 a 2 y ∗ + a 0 ∣ = ∣ a 11 a 12 y ∗ + a 1 a 11 x ∗ + a 12 y ∗ + a 1 a 12 x ∗ y ∗ + a 22 y ∗ 2 + a 1 x ∗ + 2 a 2 y ∗ + a 0 ∣ = ∣ a 11 a 12 y ∗ + a 1 a 12 y ∗ + a 1 a 22 y ∗ 2 + 2 a 2 y ∗ + a 0 ∣ \begin{equation} \begin{align} \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix} &=\begin{vmatrix} a''_{11} & a''_1 \\ a''_1 & a''_0 \end{vmatrix} = \begin{vmatrix} a_{11} & a_{11}x^*+a_{12}y^*+a_1 \\ a_{11}x^*+a_{12}y^*+a_1& a_{11}{x^{*}}^{2}+2a_{12}x^*y^*+a_{22}{y^{*}}^{2}+2a_1x^*+2a_2y^*+a_0 \end{vmatrix} \nonumber \\ &= \begin{vmatrix} a_{11} &a_{12}y^*+a_1 \\ a_{11}x^*+a_{12}y^*+a_1 & a_{12}x^*y^*+a_{22}{y^{*}}^{2}+a_1x^*+2a_2y^*+a_0 \end{vmatrix} \nonumber \\ &= \begin{vmatrix} a_{11} &a_{12}y^*+a_1 \\ a_{12}y^*+a_1 & a_{22}{y^{*}}^{2}+2a_2y^*+a_0 \end{vmatrix} \nonumber \\ \end{align} \end{equation} A(1133)= a11′′a1′′a1′′a0′′ = a11a11x∗+a12y∗+a1a11x∗+a12y∗+a1a11x∗2+2a12x∗y∗+a22y∗2+2a1x∗+2a2y∗+a0 = a11a11x∗+a12y∗+a1a12y∗+a1a12x∗y∗+a22y∗2+a1x∗+2a2y∗+a0 = a11a12y∗+a1a12y∗+a1a22y∗2+2a2y∗+a0
将 ( 12 ) (12) (12)式代入上式,我们得到:
A ( 1 3 1 3 ) = ∣ a 11 a 11 k y ∗ + a 1 a 11 k y ∗ + a 1 a 11 k 2 y ∗ 2 + 2 a 1 k y ∗ + a 0 ∣ = ∣ a 11 a 1 a 11 k y ∗ + a 1 a 1 k y ∗ + a 0 ∣ = ∣ a 11 a 1 a 1 a 0 ∣ \begin{equation} \begin{align} \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix} &=\begin{vmatrix} a_{11} &\dfrac{a_{11}}{k}y^*+a_1 \\ \dfrac{a_{11}}{k}y^*+a_1 & \dfrac{a_{11}}{k^2}{y^{*}}^{2}+2\dfrac{a_{1}}{k}y^*+a_0 \end{vmatrix} \nonumber \\ &=\begin{vmatrix} a_{11} & a_1 \\ \dfrac{a_{11}}{k}y^*+a_1 & \dfrac{a_{1}}{k}y^*+a_0 \end{vmatrix} \nonumber \\ &=\begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix} \nonumber \\ \end{align} \end{equation} A(1133)= a11ka11y∗+a1ka11y∗+a1k2a11y∗2+2ka1y∗+a0 = a11ka11y∗+a1a1ka1y∗+a0 = a11a1a1a0
由 ( 14 ) (14) (14)式我们证得, A ( 1 3 1 3 ) \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix} A(1133)在 a 11 , a 12 a_{11},a_{12} a11,a12都不为零时不变。
若 a 11 , a 12 a_{11},a_{12} a11,a12都为零,则 I 3 I_3 I3可以写为:
I 3 = ∣ 0 0 a 1 0 a 22 a 2 a 1 a 2 a 0 ∣ = − a 1 2 a 22 = 0 \begin{equation} I_3=\begin{vmatrix}0 & 0 & a_1 \\ 0 & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{vmatrix} =-a^2_{1}a_{22}=0 \end{equation} I3= 00a10a22a2a1a2a0 =−a12a22=0
因此 a 1 a_1 a1=0,代入 ( 13 ) (13) (13)式,我们得到 A ( 1 3 1 3 ) \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix} A(1133)仍然不变:
A ( 1 3 1 3 ) = ∣ 0 0 0 a 22 y ∗ 2 + 2 a 2 y ∗ + a 0 ∣ = 0 = ∣ a 11 a 1 a 1 a 0 ∣ \begin{equation} \begin{align} \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix} &=\begin{vmatrix} 0 & 0 \\ 0 &a_{22}{y^{*}}^{2}+2a_2y^*+a_0 \end{vmatrix} =0=\begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix}\nonumber \\ \end{align} \end{equation} A(1133)= 000a22y∗2+2a2y∗+a0 =0= a11a1a1a0
因此,我们证得,在 I 2 = I 3 = 0 I_2=I_3=0 I2=I3=0时,移轴后 I 3 I_3 I3的二阶主子式 A ( 1 3 1 3 ) \bold{A}\begin{pmatrix} 1& 3 \\ 1 & 3\end{pmatrix} A(1133)不变。用上面同样的方法我们可以证得二阶主子式 A ( 2 3 2 3 ) \bold{A}\begin{pmatrix} 2& 3 \\ 2 & 3\end{pmatrix} A(2233)同样不变。综上,我们证明了命题: K 1 K_1 K1在转轴下不变;且对于 I 2 = I 3 = 0 I_2=I_3=0 I2=I3=0的二次曲线, K 1 K_1 K1在移轴下也不变。
利用二次曲线的不变量和半不变量确定曲线类型
现在我们可以利用二次曲线的不变量和半不变量来确定曲线类型和形状了。假设二次曲线最终通过转轴和移轴变成了最简形式,那么
根据文章《如何利用矩阵化简平面上的二次型曲线》中的讨论结果,会有以下几种情况。
1. 椭圆型和双曲型曲线
此时曲线的方程可以写为 a 11 ′ x ′ ′ 2 + a 22 ′ y ′ ′ 2 + c = 0 a'_{11}{x''}^2+a'_{22}{y''}^2+c=0 a11′x′′2+a22′y′′2+c=0。由于 I 1 , I 2 , I 3 I_1, I_2, I_3 I1,I2,I3是不变量,因此有
I 1 = a 11 ′ + a 22 ′ I 2 = ∣ a 11 ′ 0 0 a 22 ′ ∣ = a 11 ′ a 22 ′ I 3 = ∣ a 11 ′ 0 0 0 a 22 ′ 0 0 0 c ∣ = c I 2 \begin{align}I_1 &= a'_{11}+a'_{22} \\ I_2&=\begin{vmatrix} a'_{11} & 0 \\ 0 & a'_{22}\end{vmatrix}=a'_{11}a'_{22} \\ I_3&=\begin{vmatrix} a'_{11} & 0 & 0 \\ 0 & a'_{22} & 0 \\ 0 & 0 & c\end{vmatrix}=cI_2 \end{align} I1I2I3=a11′+a22′= a11′00a22′ =a11′a22′= a11′000a22′000c =cI2
1. 当 I 2 > 0 I_2>0 I2>0时,曲线是椭圆型,此时若 I 3 I_3 I3与 I 1 I_1 I1异号,则曲线是个椭圆;若 I 3 I_3 I3与 I 1 I_1 I1同号,则曲线是个虚椭圆;若 I 3 I_3 I3=0,曲线退化为一个点。
2. 当 I 2 < 0 I_2<0 I2<0时,曲线是双曲型,,此时若 I 3 ≠ 0 I_3\neq 0 I3=0,则曲线是个双曲线;若 I 3 = 0 I_3=0 I3=0,则曲线是一对交叉直线。
2. 抛物型曲线
若 I 2 = 0 I_2=0 I2=0,则曲线是抛物型曲线。不妨设 a 22 ′ ≠ 0 a'_{22}\neq 0 a22′=0。若曲线是抛物线,此时方程可以写为 a 22 ′ y ′ ′ 2 + 2 a 1 ′ x ′ ′ = 0 a'_{22}{y''}^2+2a'_1x''=0 a22′y′′2+2a1′x′′=0,此时有:
I 1 = a 22 ′ I 2 = ∣ 0 0 0 a 22 ′ ∣ = 0 I 3 = ∣ 0 0 a 1 ′ 0 a 22 ′ 0 a 1 ′ 0 0 ∣ = − a 1 2 a 22 ′ = − I 1 a 1 2 \begin{align}I_1 &= a'_{22} \\ I_2&=\begin{vmatrix} 0 & 0 \\ 0 & a'_{22}\end{vmatrix}=0 \\ I_3&=\begin{vmatrix} 0 & 0 & a'_1\\ 0 & a'_{22} & 0 \\ a'_1 & 0 & 0\end{vmatrix}=-a_1^2a'_{22}=-I_1a_1^2 \end{align} I1I2I3=a22′= 000a22′ =0= 00a1′0a22′0a1′00 =−a12a22′=−I1a12
若 I 3 = 0 I_3=0 I3=0 ,此时方程可以写为 a 22 ′ y ′ ′ 2 + c = 0 a'_{22}{y''}^2+c=0 a22′y′′2+c=0,则有
I 1 = a 22 ′ I 2 = ∣ 0 0 0 a 22 ′ ∣ = 0 I 3 = ∣ 0 0 0 0 a 22 ′ 0 0 0 c ∣ = 0 \begin{align}I_1 &= a'_{22} \\ I_2&=\begin{vmatrix} 0 & 0 \\ 0 & a'_{22}\end{vmatrix}=0 \\ I_3&=\begin{vmatrix} 0 & 0 & 0\\ 0 & a'_{22} & 0 \\ 0 & 0 & c\end{vmatrix}=0 \end{align} I1I2I3=a22′= 000a22′ =0= 0000a22′000c =0
K 1 K_1 K1在这种情况下也是不变量,因此有
K 1 = ∣ 0 0 0 0 ∣ + ∣ a 22 ′ 0 0 c ∣ = c I 1 K_1=\begin{vmatrix}0 & 0\\0&0 \end{vmatrix}+\begin{vmatrix}a'_{22} & 0\\0&c \end{vmatrix}=cI_{1} K1= 0000 + a22′00c =cI1
综上有:
1. 当 I 2 = 0 , I 3 ≠ 0 I_2=0, I_3 \neq 0 I2=0,I3=0时,曲线是一个抛物线。
2. 当 I 2 = I 3 = 0 I_2=I_3=0 I2=I3=0时,曲线是一对直线,此时若 K 1 < 0 K_1< 0 K1<0,则曲线是一对平行直线;若 K 1 > 0 K_1> 0 K1>0,则曲线是一对虚平行直线;若 K 1 = 0 K_1=0 K1=0,则曲线是一对重合直线。