您的位置:首页 > 房产 > 建筑 > 百度竞价排名官网_企业所得税优惠政策最新2023规定_seo学院_刷神马seo排名首页排名

百度竞价排名官网_企业所得税优惠政策最新2023规定_seo学院_刷神马seo排名首页排名

2025/3/10 11:32:38 来源:https://blog.csdn.net/weixin_51520249/article/details/144629635  浏览:    关键词:百度竞价排名官网_企业所得税优惠政策最新2023规定_seo学院_刷神马seo排名首页排名
百度竞价排名官网_企业所得税优惠政策最新2023规定_seo学院_刷神马seo排名首页排名
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

一、前期准备工作

import torch.nn.functional as F
import numpy  as np
import pandas as pd
import torch
from torch    import nn

1. 导入数据

data = pd.read_csv(r"/home/aiusers/space_yjl/深度学习训练营/进阶/第R4周:LSTM-火灾温度预测/woodpine2.csv")data

在这里插入图片描述

2. 数据集可视化

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np  # 新增导入numpy库# 读取CSV文件
data = pd.read_csv(r'/home/aiusers/space_yjl/深度学习训练营/进阶/第R4周:LSTM-火灾温度预测/woodpine2.csv')# 提取列数据,并转换为numpy数组
time = np.array(data['Time'])
tem1 = np.array(data['Tem1'])
co1 = np.array(data['CO 1'])
soot1 = np.array(data['Soot 1'])# 绘制折线图
plt.plot(time, tem1, label='Tem1')
plt.plot(time, co1, label='CO 1')
plt.plot(time, soot1, label='Soot 1')# 添加标题和坐标轴标签
plt.title('Data Visualization')
plt.xlabel('Time')
plt.ylabel('Values')# 添加图例
plt.legend()# 显示图形
plt.show()

在这里插入图片描述
训练营中的这个有点问题 未解决 我换了一种方式可视化数据

import matplotlib.pyplot as plt
import seaborn as snsplt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率fig, ax =plt.subplots(1,3,constrained_layout=True, figsize=(14, 3))sns.lineplot(data=data["Tem1"], ax=ax[0])
sns.lineplot(data=data["CO 1"], ax=ax[1])
sns.lineplot(data=data["Soot 1"], ax=ax[2])
plt.show()

在这里插入图片描述

dataFrame = data.iloc[:,1:]dataFrame

在这里插入图片描述

二、构建数据集

1. 数据集预处理


from sklearn.preprocessing import MinMaxScalerdataFrame = data.iloc[:,1:].copy()
sc  = MinMaxScaler(feature_range=(0, 1)) #将数据归一化,范围是0到1for i in ['CO 1', 'Soot 1', 'Tem1']:dataFrame[i] = sc.fit_transform(dataFrame[i].values.reshape(-1, 1))dataFrame.shape

在这里插入图片描述

2. 设置X、y

width_X = 8
width_y = 1##取前8个时间段的Tem1、CO 1、Soot 1为X,第9个时间段的Tem1为y。
X = []
y = []in_start = 0for _, _ in data.iterrows():in_end  = in_start + width_Xout_end = in_end   + width_yif out_end < len(dataFrame):X_ = np.array(dataFrame.iloc[in_start:in_end , ])y_ = np.array(dataFrame.iloc[in_end  :out_end, 0])X.append(X_)y.append(y_)in_start += 1X = np.array(X)
y = np.array(y).reshape(-1,1,1)X.shape, y.shape

在这里插入图片描述

检查数据集中是否有空值


print(np.any(np.isnan(X)))
print(np.any(np.isnan(y)))

在这里插入图片描述

3. 划分数据集


X_train = torch.tensor(np.array(X[:5000]), dtype=torch.float32)
y_train = torch.tensor(np.array(y[:5000]), dtype=torch.float32)X_test  = torch.tensor(np.array(X[5000:]), dtype=torch.float32)
y_test  = torch.tensor(np.array(y[5000:]), dtype=torch.float32)
X_train.shape, y_train.shape

在这里插入图片描述

from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train),batch_size=64, shuffle=False)test_dl  = DataLoader(TensorDataset(X_test, y_test),batch_size=64, shuffle=False)

三、模型训练

1. 构建模型

class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=3 ,hidden_size=320, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=320 ,hidden_size=320, num_layers=1, batch_first=True)self.fc0   = nn.Linear(320, 1)def forward(self, x):out, hidden1 = self.lstm0(x) out, _ = self.lstm1(out, hidden1) out    = self.fc0(out) return out[:, -1:, :]   #取2个预测值,否则经过lstm会得到8*2个预测model = model_lstm()
model
model_lstm((lstm0): LSTM(3, 320, batch_first=True)(lstm1): LSTM(320, 320, batch_first=True)(fc0): Linear(in_features=320, out_features=1, bias=True)
)

模型的输出数据集格式是什么

model(torch.rand(30,8,3)).shape

在这里插入图片描述

2. 定义训练函数

# 训练循环
import copy
def train(train_dl, model, loss_fn, opt, lr_scheduler=None):size        = len(train_dl.dataset)  num_batches = len(train_dl)   train_loss  = 0  # 初始化训练损失和正确率for x, y in train_dl:  x, y = x.to(device), y.to(device)# 计算预测误差pred = model(x)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距# 反向传播opt.zero_grad()  # grad属性归零loss.backward()  # 反向传播opt.step()       # 每一步自动更新# 记录losstrain_loss += loss.item()if lr_scheduler is not None:lr_scheduler.step()print("learning rate = {:.5f}".format(opt.param_groups[0]['lr']), end="  ")train_loss /= num_batchesreturn train_loss

3. 定义测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目test_loss   = 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for x, y in dataloader:x, y = x.to(device), y.to(device)# 计算lossy_pred = model(x)loss        = loss_fn(y_pred, y)test_loss += loss.item()test_loss /= num_batchesreturn test_loss

4. 正式训练模型

#设置GPU训练
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

在这里插入图片描述

#训练模型
model = model_lstm()
model = model.to(device)
loss_fn    = nn.MSELoss() # 创建损失函数
learn_rate = 1e-1   # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate,weight_decay=1e-4)
epochs     = 50
train_loss = []
test_loss  = []
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt,epochs, last_epoch=-1) for epoch in range(epochs):model.train()epoch_train_loss = train(train_dl, model, loss_fn, opt, lr_scheduler)model.eval()epoch_test_loss = test(test_dl, model, loss_fn)train_loss.append(epoch_train_loss)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_loss:{:.5f}, Test_loss:{:.5f}')print(template.format(epoch+1, epoch_train_loss,  epoch_test_loss))print("="*20, 'Done', "="*20)

在这里插入图片描述

四、模型评估

1. LOSS图

import matplotlib.pyplot as pltplt.figure(figsize=(5, 3),dpi=120)plt.plot(train_loss    , label='LSTM Training Loss')
plt.plot(test_loss, label='LSTM Validation Loss')plt.title('Training and Validation Loss')
plt.legend()
plt.show()

在这里插入图片描述

2. 调用模型进行预测

predicted_y_lstm = sc.inverse_transform(model(X_test).detach().numpy().reshape(-1,1))                    # 测试集输入模型进行预测
y_test_1         = sc.inverse_transform(y_test.reshape(-1,1))
y_test_one       = [i[0] for i in y_test_1]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]plt.figure(figsize=(5, 3),dpi=120)
# 画出真实数据和预测数据的对比曲线
plt.plot(y_test_one[:2000], color='red', label='real_temp')
plt.plot(predicted_y_lstm_one[:2000], color='blue', label='prediction')plt.title('Title')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()

在这里插入图片描述

3. R2值评估

from sklearn import metrics
"""
RMSE :均方根误差  ----->  对均方误差开方
R2   :决定系数,可以简单理解为反映模型拟合优度的重要的统计量
"""
RMSE_lstm  = metrics.mean_squared_error(predicted_y_lstm_one, y_test_1)**0.5
R2_lstm    = metrics.r2_score(predicted_y_lstm_one, y_test_1)print('均方根误差: %.5f' % RMSE_lstm)
print('R2: %.5f' % R2_lstm)

在这里插入图片描述

五、个人总结

总的来说,这个模型先通过两层 LSTM 层对输入的序列数据进行特征提取和对序列中信息的记忆、传递处理,然后利用全连接层将提取到的特征转换为具体的预测值,并筛选出最后时刻对应的预测输出。

输入形状

对于这个模型,输入数据x的形状假设为(batch_size, seq_length, input_size)。在代码中,input_size被定义为3,batch_size是每次输入的批量大小(在代码中未明确限制,但由数据加载等环节决定),seq_length是序列长度,即每个样本序列包含的时间步数。

中间层形状变化

第一个 LSTM 层(self.lstm0):

输入形状为(batch_size, seq_length, 3),经过self.lstm0后,输出out的形状变为(batch_size, seq_length, 320),隐藏状态hidden1的形状为(1, batch_size, 320)。这里的320是第一个 LSTM 层定义的隐藏状态维度hidden_size,1是层数(num_layers)。

第二个 LSTM 层(self.lstm1):

它接收第一个 LSTM 层的输出out(形状为(batch_size, seq_length, 320))和隐藏状态hidden1(形状为(1, batch_size, 320))作为输入。输出out的形状在经过self.lstm1后仍然保持为(batch_size, seq_length, 320),因为这一层的参数设置(input_size = 320,hidden_size = 320)没有改变数据的维度规模,只是对数据进行了进一步的特征提取和序列信息处理。

全连接层(self.fc0):

接收形状为(batch_size, seq_length, 320)的out,经过线性变换self.fc0后,输出out的形状变为(batch_size, seq_length, 1)。这是因为全连接层的定义是nn.Linear(320, 1),将输入的维度为320的特征向量映射到维度为1的输出空间。

输出形状

最后通过return out[:, -1:, :]操作,输出形状变为(batch_size, 1, 1)。这里的操作是提取每个样本序列(batch_size个样本)的最后一个时间步(-1:表示最后一个位置)对应的预测值,并且由于全连接层输出的最后一个维度是1,所以最终输出形状是(batch_size, 1, 1),每个样本对应一个最终的预测值(维度为1)。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com