您的位置:首页 > 房产 > 家装 > 网页设计风格_安阳网站建设优化渠道_百度热搜榜排名今日p2p_长尾关键词挖掘工具爱网站

网页设计风格_安阳网站建设优化渠道_百度热搜榜排名今日p2p_长尾关键词挖掘工具爱网站

2024/12/23 8:35:22 来源:https://blog.csdn.net/weixin_44025655/article/details/144138517  浏览:    关键词:网页设计风格_安阳网站建设优化渠道_百度热搜榜排名今日p2p_长尾关键词挖掘工具爱网站
网页设计风格_安阳网站建设优化渠道_百度热搜榜排名今日p2p_长尾关键词挖掘工具爱网站

【NLP高频面题 - LLM架构篇】大模型为何使用RMSNorm代替LayerNorm?

重要性:★★★ 💯


NLP Github 项目:

  • NLP 项目实践:fasterai/nlp-project-practice

    介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用,分享大模型算法工程师的日常工作和实战经验

  • AI 藏经阁:https://gitee.com/fasterai/ai-e-book

    介绍:该仓库主要分享了数百本 AI 领域电子书

  • AI 算法面经:fasterai/nlp-interview-handbook#面经

    介绍:该仓库一网打尽互联网大厂NLP算法面经,算法求职必备神器

  • NLP 剑指Offer:https://gitee.com/fasterai/nlp-interview-handbook

    介绍:该仓库汇总了 NLP 算法工程师高频面题


大模型使用RMSNorm代替LayerNorm是为了降低计算量。

均方根归一化 (Root Mean Square Layer Normalization,RMS Norm)论文中提出,层归一化(Layer Normalization)之所以有效,关键在于其实现的缩放不变性(Scale Invariance),而非平移不变性(Translation Invariance)。

基于此,RMSNorm在设计时简化了传统层归一化的方法。它移除了层归一化中的平移操作(即去掉了均值的计算和减除步骤),只保留了缩放操作。

因此 RMSNorm 主要是在 LayerNorm 的基础上去掉了减均值这一项,其计算效率更高且没有降低性能。

RMS Norm针对输入向量 x,RMSNorm 函数计算公式如下:

层归一化(LayerNorm)的计算公式:

经过对比,可以清楚的看到,RMSNorm 主要是在 LayerNorm 的基础上去掉了减均值这一项,计算量明显降低。

RMSNorm 层归一化的代码实现:


NLP 大模型高频面题汇总

NLP基础篇
BERT 模型面
LLMs 微调面

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com