您的位置:首页 > 房产 > 家装 > 如何学做网站_企业网址是怎么写的_中小企业网络营销现状_关键词代发排名推广

如何学做网站_企业网址是怎么写的_中小企业网络营销现状_关键词代发排名推广

2024/12/28 0:16:33 来源:https://blog.csdn.net/GDDGHS_/article/details/144038161  浏览:    关键词:如何学做网站_企业网址是怎么写的_中小企业网络营销现状_关键词代发排名推广
如何学做网站_企业网址是怎么写的_中小企业网络营销现状_关键词代发排名推广

1、窗口函数的分类

窗口函数,即数据划分窗口后可以调用的处理函数。

l 全量函数:窗口先缓存所有元素,等到触发条件后对窗口内的全量元素执行计算。

l 增量函数:窗口保存一份中间数据,每流入一个新元素,新元素与中间数据两两合一,生成新的中间数据。

2、增量聚合函数

指窗口每进入一条数据就计算一次

 

实现方法(常见的增量聚合函数如下):
reduce(reduceFunction)
aggregate(aggregateFunction)
sum()
min()
max()

reduce接受两个相同类型的输入,生成一个同类型输出,所以泛型就一个 <T>
maxBy、minBy、sum这3个底层都是由reduce实现的
aggregate的输入值、中间结果值、输出值它们3个类型可以各不相同,泛型有<T, ACC, R>

 

AggregateFunction 【了解】

AggregateFunction 比 ReduceFunction 更加的通用,它有三个参数:输入类型(IN)、累加器类型(ACC)和输出类型(OUT)

输入类型是输入流中的元素类型,AggregateFunction有一个add方法可以将一个输入元素添加到一个累加器中。该接口还具有创建初始累加器(createAccumulator方法)、将两个累加器合并到一个累加器(merge方法)以及从累加器中提取输出(类型为OUT)的方法。

package com.bigdata.windows;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class _04_AggDemo {public static final Tuple3[] ENGLISH = new Tuple3[] {Tuple3.of("class1", "张三", 100L),Tuple3.of("class1", "李四", 40L),Tuple3.of("class1", "王五", 60L),Tuple3.of("class2", "赵六", 20L),Tuple3.of("class2", "小七", 30L),Tuple3.of("class2", "小八", 50L)};public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);env.setParallelism(1);//2. source-加载数据DataStreamSource<Tuple3<String,String,Long>> dataStreamSource = env.fromElements(ENGLISH);KeyedStream<Tuple3<String,String,Long>, String> keyedStream = dataStreamSource.keyBy(new KeySelector<Tuple3<String,String,Long>, String>() {@Overridepublic String getKey(Tuple3<String,String,Long> tuple3) throws Exception {return tuple3.f0;}});//3. transformation-数据处理转换// 三个参数:输入类型(IN)、累加器类型(ACC)和输出类型(OUT)keyedStream.countWindow(3).aggregate(new AggregateFunction<Tuple3<String,String,Long>, Tuple3<String,Long,Integer>, Tuple2<String,Double>>() {// 初始化一个中间变量Tuple3<String,Long,Integer> tuple3 = Tuple3.of(null,0L,0);@Overridepublic Tuple3<String,Long,Integer> createAccumulator() {return tuple3;}@Overridepublic Tuple3<String,Long,Integer> add(Tuple3<String, String, Long> value, Tuple3<String,Long,Integer> accumulator) {long tempScore = value.f2 + accumulator.f1;int length = accumulator.f2 + 1;return Tuple3.of(value.f0, tempScore,length);}@Overridepublic Tuple2<String, Double> getResult( Tuple3<String,Long,Integer> accumulator) {return Tuple2.of(accumulator.f0,(double) accumulator.f1 / accumulator.f2);}@Overridepublic Tuple3<String, Long, Integer> merge(Tuple3<String, Long, Integer> a, Tuple3<String, Long, Integer> b) {return Tuple3.of(a.f0,a.f1+b.f1,a.f2+b.f2);}}).print();//4. sink-数据输出//5. execute-执行env.execute();}
}

3、全量聚合函数

指在窗口触发的时候才会对窗口内的所有数据进行一次计算(等窗口的数据到齐,才开始进行聚合计算,可实现对窗口内的数据进行排序等需求) 

实现方法
apply(windowFunction)
process(processWindowFunction)全量聚合: 窗口需要维护全部原始数据,窗口触发进行全量聚合。
ProcessWindowFunction一次性迭代整个窗口里的所有元素,比较重要的一个对象是Context,可以获取到事件和状态信息,这样我们就可以实现更加灵活的控制,该算子会浪费很多性能,主要原因是不增量计算,要缓存整个窗口然后再去处理,所以要设计好内存。
package com.bigdata.day04;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.windows.GlobalWindow;
import org.apache.flink.util.Collector;
public class Demo03 {public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据Tuple3[] ENGLISH = new Tuple3[] {Tuple3.of("class1", "张三", 100L),Tuple3.of("class1", "李四", 40L),Tuple3.of("class1", "王五", 60L),Tuple3.of("class2", "赵六", 20L),Tuple3.of("class2", "小七", 30L),Tuple3.of("class2", "小八", 50L)};// 先求每个班级的总分数,再求每个班级的总人数DataStreamSource<Tuple3<String,String,Long>> streamSource = env.fromElements(ENGLISH);KeyedStream<Tuple3<String, String, Long>, String> keyedStream = streamSource.keyBy(v -> v.f0);// 每个分区中的数据都达到了3条才能触发,哪个分区达到了三条,哪个就触发,不够的不计算// //Tuple3<String, String, Long> 输入类型//    //Tuple2<Long, Long> 累加器ACC类型,保存中间状态 第一个值代表总成绩,第二个值代表总人数//    //Double 输出类型// 第一个泛型是输入数据的类型,第二个泛型是返回值类型   第三个是key 的类型, 第四个是窗口对象keyedStream.countWindow(3).apply(new WindowFunction<Tuple3<String, String, Long>, Double, String, GlobalWindow>() {@Overridepublic void apply(String s, GlobalWindow window, Iterable<Tuple3<String, String, Long>> input, Collector<Double> out) throws Exception {// 计算总成绩,计算总人数int sumScore = 0,sumPerson=0;for (Tuple3<String, String, Long> tuple3 : input) {sumScore += tuple3.f2;sumPerson += 1;}out.collect((double)sumScore/sumPerson);}}).print();//5. execute-执行env.execute();}
}

 

 

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com