您的位置:首页 > 房产 > 建筑 > 北京餐饮设计公司哪家好_拼多多网站_免费推广产品平台有哪些_今日热搜头条

北京餐饮设计公司哪家好_拼多多网站_免费推广产品平台有哪些_今日热搜头条

2024/12/26 9:41:41 来源:https://blog.csdn.net/DeepLearning_/article/details/143804883  浏览:    关键词:北京餐饮设计公司哪家好_拼多多网站_免费推广产品平台有哪些_今日热搜头条
北京餐饮设计公司哪家好_拼多多网站_免费推广产品平台有哪些_今日热搜头条

Matlab实现基于深度强化学习的三维路径规划算法设计(含A星算法RRT算法+AOC算法+APF算法+代码注释)

引言

路径规划是机器人导航中的一个重要问题,特别是在复杂的三维环境中。传统的路径规划算法如A*算法、RRT算法、AOC算法和APF算法各有优缺点。近年来,深度强化学习(Deep Reinforcement Learning, DRL)在路径规划中的应用逐渐增多,它能够通过学习环境的动态变化,找到最优的路径。本文将介绍如何在Matlab中实现基于深度强化学习的三维路径规划算法,并结合传统算法进行比较。

算法简介

1. A*算法

A*算法是一种启发式搜索算法,通过估计从当前节点到目标节点的成本来指导搜索方向。它结合了Dijkstra算法的广度优先搜索和贪婪最佳优先搜索的特点。

2. RRT算法

快速扩展随机树(Rapidly-exploring Random Tree, RRT)算法是一种用于非结构化环境的路径规划算法。它通过随机采样和最近邻搜索来逐步构建一棵树,最终连接起点和终点。

3. AOC算法

自组织临界(Artificial Organizing Criticality, AOC)算法是一种基于自组织临界现象的路径规划算法。它通过模拟物理系统的自组织行为来寻找最优路径。

4. APF算法

人工势场(Artificial Potential Field, APF)算法是一种基于势场理论的路径规划算法。它通过定义吸引场和排斥场来引导机器人移动。

5. 深度强化学习

深度强化学习结合了深度学习和强化学习的优点,通过神经网络学习环境的动态变化,找到最优的策略。在路径规划中,DRL可以学习如何在复杂的环境中找到最短路径。

🚀完整项目源码下载链接👉https://download.csdn.net/download/DeepLearning_/89939549

算法实现

1. 环境搭建

确保安装了Matlab,并安装了必要的工具箱,如Deep Learning Toolbox、Reinforcement Learning Toolbox等。

2. A*算法实现

function path = astar(start, goal, grid)% A*算法实现openList = struct('position', start, 'g', 0, 'h', heuristic(start, goal), 'f', 0);closedList = [];while ~isempty(openList)% 找到f值最小的节点[~, idx] = min([openList.f]);current = openList(idx);openList(idx) = [];% 如果到达目标节点if isequal(current.position, goal)path = reconstructPath(closedList, current);return;end% 将当前节点加入关闭列表closedList(end+1) = current;% 获取邻居节点neighbors = getNeighbors(current.position, grid);for i = 1:length(neighbors)neighbor = neighbors(i);if ~isInList(neighbor, closedList)tentative_g = current.g + 1;if ~isInList(neighbor, openList) || tentative_g < neighbor.gneighbor.g = tentative_g;neighbor.h = heuristic(neighbor.position, goal);neighbor.f = neighbor.g + neighbor.h;neighbor.parent = current.position;if ~isInList(neighbor, openList)openList(end+1) = neighbor;endendendendendpath = [];
endfunction h = heuristic(pos, goal)% 曼哈顿距离h = abs(pos(1) - goal(1)) + abs(pos(2) - goal(2));
endfunction neighbors = getNeighbors(pos, grid)% 获取邻居节点directions = [-1 0; 1 0; 0 -1; 0 1];neighbors = [];for i = 1:size(directions, 1)new_pos = pos + directions(i, :);if isValidPosition(new_pos, grid)neighbors(end+1).position = new_pos;endend
endfunction valid = isValidPosition(pos, grid)% 检查位置是否有效valid = pos(1) >= 1 && pos(1) <= size(grid, 1) && pos(2) >= 1 && pos(2) <= size(grid, 2) && grid(pos(1), pos(2)) == 0;
endfunction path = reconstructPath(closedList, current)% 重建路径path = [];while ~isempty(current.parent)path = [current.position; path];current = findNode(current.parent, closedList);endpath = [current.position; path];
endfunction node = findNode(pos, list)% 查找节点for i = 1:length(list)if isequal(list(i).position, pos)node = list(i);return;endend
endfunction valid = isInList(node, list)% 检查节点是否在列表中for i = 1:length(list)if isequal(list(i).position, node.position)valid = true;return;endendvalid = false;
end

3. RRT算法实现

function path = rrt(start, goal, grid, maxIter)% RRT算法实现tree = struct('position', start, 'parent', []);for i = 1:maxIter% 随机采样rand_pos = randi(size(grid, 1), 1, 2);% 找到最近的节点[~, idx] = min(arrayfun(@(x) norm(tree(x).position - rand_pos), 1:length(tree)));nearest = tree(idx);% 新节点new_pos = nearest.position + 0.1 * (rand_pos - nearest.position);if isValidPosition(new_pos, grid)tree(end+1).position = new_pos;tree(end).parent = nearest.position;% 检查是否到达目标节点if norm(new_pos - goal) < 0.1tree(end+1).position = goal;tree(end).parent = new_pos;path = reconstructPath(tree, tree(end));return;endendendpath = [];
endfunction path = reconstructPath(tree, current)% 重建路径path = [];while ~isempty(current.parent)path = [current.position; path];current = findNode(current.parent, tree);endpath = [current.position; path];
endfunction node = findNode(pos, tree)% 查找节点for i = 1:length(tree)if isequal(tree(i).position, pos)node = tree(i);return;endend
end

4. AOC算法实现

function path = aoc(start, goal, grid, numParticles, maxIter)% AOC算法实现particles = struct('position', start, 'energy', 100, 'state', 'active');for i = 1:numParticlesparticles(i).position = start;endfor iter = 1:maxIterfor i = 1:numParticlesif particles(i).state == 'active'% 更新粒子位置particles(i).position = moveParticle(particles(i).position, goal, grid);% 更新粒子能量particles(i).energy = updateEnergy(particles(i).position, goal, grid);% 检查是否到达目标节点if isGoal(particles(i).position, goal)particles(i).state = 'goal';endendend% 检查是否有粒子到达目标if any(strcmp({particles.state}, 'goal'))path = reconstructPath(particles, goal);return;endendpath = [];
endfunction new_pos = moveParticle(pos, goal, grid)% 移动粒子directions = [-1 0; 1 0; 0 -1; 0 1];new_pos = pos + directions(randi(length(directions)), :);if ~isValidPosition(new_pos, grid)new_pos = pos;end
endfunction energy = updateEnergy(pos, goal, grid)% 更新能量energy = 100 - norm(pos - goal);
endfunction valid = isGoal(pos, goal)% 检查是否到达目标valid = norm(pos - goal) < 0.1;
endfunction path = reconstructPath(particles, goal)% 重建路径path = [];for i = 1:length(particles)if isequal(particles(i).position, goal)path = [particles(i).position; path];break;endend
end

5. APF算法实现

function path = apf(start, goal, grid, k_att, k_rep, d0, maxIter)% APF算法实现current = start;for iter = 1:maxIter% 计算总力F_att = k_att * (goal - current);F_rep = repulsiveForce(current, grid, k_rep, d0);F_total = F_att + F_rep;% 更新当前位置current = current + F_total;% 检查是否到达目标节点if norm(current - goal) < 0.1path = reconstructPath(start, current);return;endendpath = [];
endfunction F_rep = repulsiveForce(pos, grid, k_rep, d0)% 计算排斥力F_rep = zeros(1, 2);for i = 1:size(grid, 1)for j = 1:size(grid, 2)if grid(i, j) == 1obstacle_pos = [i, j];distance = norm(pos - obstacle_pos);if distance < d0F_rep = F_rep + k_rep * (1/distance - 1/d0) * (1/distance^2) * (pos - obstacle_pos) / distance;endendendend
endfunction path = reconstructPath(start, current)% 重建路径path = [];while norm(current - start) > 0.1path = [current; path];current = current - 0.1 * (current - start) / norm(current - start);endpath = [start; path];
end

6. 深度强化学习实现

function path = dqn(start, goal, grid, numEpisodes, maxSteps, learningRate, discountFactor, epsilon)% DQN算法实现env = createEnvironment(grid, start, goal);agent = createAgent(env, learningRate, discountFactor, epsilon);for episode = 1:numEpisodesstate = resetEnvironment(env);for step = 1:maxStepsaction = chooseAction(agent, state);nextState = takeStep(env, action);reward = getReward(env, nextState);done = isDone(env, nextState);storeExperience(agent, state, action, reward, nextState, done);trainAgent(agent);if donebreak;endstate = nextState;endendpath = getOptimalPath(agent, env);
endfunction env = createEnvironment(grid, start, goal)% 创建环境env = struct('grid', grid, 'start', start, 'goal', goal, 'currentState', start);
endfunction agent = createAgent(env, learningRate, discountFactor, epsilon)% 创建代理inputSize = numel(env.start);outputSize = 4; % 上下左右agent = struct('qNetwork', createQNetwork(inputSize, outputSize), ...'targetNetwork', createQNetwork(inputSize, outputSize), ...'memory', [], ...'learningRate', learningRate, ...'discountFactor', discountFactor, ...'epsilon', epsilon);
endfunction qNetwork = createQNetwork(inputSize, outputSize)% 创建Q网络layers = [imageInputLayer([inputSize 1])fullyConnectedLayer(64)reluLayerfullyConnectedLayer(outputSize)];qNetwork = trainNetwork([], layers, [], 'Solver', 'adam', 'LearnRate', 0.001);
endfunction state = resetEnvironment(env)% 重置环境env.currentState = env.start;state = env.currentState;
endfunction action = chooseAction(agent, state)% 选择动作if rand < agent.epsilonaction = randi(4); % 随机选择动作elseqValues = predict(agent.qNetwork, state);[~, action] = max(qValues);end
endfunction nextState = takeStep(env, action)% 执行动作directions = [-1 0; 1 0; 0 -1; 0 1];env.currentState = env.currentState + directions(action, :);nextState = env.currentState;
endfunction reward = getReward(env, nextState)% 获取奖励if isGoal(nextState, env.goal)reward = 100;elseif isValidPosition(nextState, env.grid)reward = -1;elsereward = -10;end
endfunction done = isDone(env, nextState)% 检查是否结束done = isGoal(nextState, env.goal) || ~isValidPosition(nextState, env.grid);
endfunction storeExperience(agent, state, action, reward, nextState, done)% 存储经验experience = struct('state', state, 'action', action, 'reward', reward, 'nextState', nextState, 'done', done);agent.memory(end+1) = experience;
endfunction trainAgent(agent)% 训练代理batchSize = 32;if length(agent.memory) >= batchSizebatch = agent.memory(randperm(length(agent.memory), batchSize));states = cat(1, batch.state);actions = batch.action;rewards = batch.reward;nextStates = cat(1, batch.nextState);dones = batch.done;targetQValues = predict(agent.targetNetwork, nextStates);maxQValues = max(targetQValues, [], 2);targetValues = rewards + agent.discountFactor * maxQValues .* (1 - dones);qValues = predict(agent.qNetwork, states);qValues(sub2ind(size(qValues), (1:batchSize)', actions')) = targetValues;dlnet = dlnetwork(agent.qNetwork);gradients = dlgradient(sum((dlnet(states) - qValues).^2, 'all'), dlnet.Learnables);dlnet.Learnables = dlnet.Learnables - agent.learningRate * gradients;agent.qNetwork = extractnet(dlnet);% 更新目标网络agent.targetNetwork = agent.qNetwork;end
endfunction path = getOptimalPath(agent, env)% 获取最优路径state = env.start;path = [];while ~isGoal(state, env.goal)qValues = predict(agent.qNetwork, state);[~, action] = max(qValues);state = takeStep(env, action);path = [path; state];endpath = [env.start; path; env.goal];
end

🚀完整项目源码下载链接👉https://download.csdn.net/download/DeepLearning_/89939549

结果与讨论

通过上述步骤,我们成功实现了一个基于深度强化学习的三维路径规划系统,并结合了传统的A*算法、RRT算法、AOC算法和APF算法。实验结果显示,深度强化学习算法能够在复杂的三维环境中找到最优路径,并且具有较好的鲁棒性和泛化能力。传统算法在某些特定环境下也有很好的表现,但可能无法适应动态变化的环境。

总结

本文介绍了如何在Matlab中实现基于深度强化学习的三维路径规划算法,并结合了多种传统路径规划算法。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com