您的位置:首页 > 游戏 > 手游 > 一手网推项目平台_悟空crm的优势与不足_360提交入口网址_网站建设制作流程

一手网推项目平台_悟空crm的优势与不足_360提交入口网址_网站建设制作流程

2024/10/30 17:28:17 来源:https://blog.csdn.net/u013172930/article/details/143171857  浏览:    关键词:一手网推项目平台_悟空crm的优势与不足_360提交入口网址_网站建设制作流程
一手网推项目平台_悟空crm的优势与不足_360提交入口网址_网站建设制作流程

本文是将文章《线性可分支持向量机的原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。


公式 9-32 是线性可分支持向量机(SVM)中的一个关键公式,用于表达线性分类超平面的位置。通过这个公式,我们可以确定支持向量机的分类边界,并通过分类器将正类样本与负类样本分隔开。

公式 9-32 的表达式为:
∑ i = 1 N α i ∗ y i ( x i ⋅ x ) + b ∗ = 0 \sum_{i=1}^{N} \alpha_i^* y_i (x_i \cdot x) + b^* = 0 i=1Nαiyi(xix)+b=0

1. 公式的含义

公式 9-32 表示了支持向量机的分类超平面条件,描述了分类边界上的点的特征。这个公式的含义如下:

  • α i ∗ \alpha_i^* αi:是第 i i i 个样本点的最优拉格朗日乘子。只有 α i ∗ > 0 \alpha_i^* > 0 αi>0 的点才会对分类超平面的构造产生实际影响,这些点被称为支持向量
  • y i y_i yi:是第 i i i 个样本的类别标签,取值为 + 1 +1 +1 − 1 -1 1
  • x i x_i xi:是第 i i i 个样本的特征向量。
  • x x x:是任意待分类的点。
  • b ∗ b^* b:是分类超平面的偏置,也称为截距。它定义了分类超平面在特征空间中的位置。
  • ( x i ⋅ x ) (x_i \cdot x) (xix):表示支持向量 x i x_i xi 与待分类点 x x x 的内积,反映了这两个点在特征空间中的相似性。

这个公式用于定义分类边界的点。对于位于分类超平面上的点,公式 9-32 的结果为 0,表示这些点恰好位于分类边界上。

2. 推导过程

公式 9-32 源于支持向量机的对偶问题的解。我们首先回顾一下支持向量机的目标是找到一个分类超平面:
w T x + b = 0 w^T x + b = 0 wTx+b=0

其中,法向量 w w w 决定了超平面的方向,偏置 b b b 决定了超平面的具体位置。

根据拉格朗日乘子法,法向量 w w w 可以表示为所有支持向量的加权和:
w = ∑ i = 1 N α i ∗ y i x i w = \sum_{i=1}^{N} \alpha_i^* y_i x_i w=i=1Nαiyixi

将这个表达式代入分类超平面方程 w T x + b = 0 w^T x + b = 0 wTx+b=0 中,得到:
( ∑ i = 1 N α i ∗ y i x i ) T x + b ∗ = 0 \left( \sum_{i=1}^{N} \alpha_i^* y_i x_i \right)^T x + b^* = 0 (i=1Nαiyixi)Tx+b=0

将内积展开,得到:
∑ i = 1 N α i ∗ y i ( x i ⋅ x ) + b ∗ = 0 \sum_{i=1}^{N} \alpha_i^* y_i (x_i \cdot x) + b^* = 0 i=1Nαiyi(xix)+b=0

这个方程描述了位于分类超平面上的所有点的特征。因此,公式 9-32 表示分类边界上的点满足的条件。

3. 几何意义

几何上,公式 9-32 表示了支持向量机的分类超平面,它定义了将正类样本和负类样本分隔开的超平面。分类超平面的方程通过支持向量和待分类点的内积计算,确保分类器能够正确划分正类和负类样本。

  • 支持向量的作用:分类超平面的构造是通过所有支持向量 x i x_i xi 的加权和来决定的。拉格朗日乘子 α i ∗ \alpha_i^* αi 的值决定了每个支持向量对超平面构造的贡献。
  • 内积的作用:内积 ( x i ⋅ x ) (x_i \cdot x) (xix) 表示支持向量 x i x_i xi 和待分类点 x x x 之间的相似性。相似度越高的点对分类边界的影响越大。

4. 物理解释

从物理角度看,公式 9-32 表示分类器如何根据支持向量的位置来决定分类超平面的位置。通过对所有支持向量的内积计算,分类器能够精确地确定分类超平面的位置。

  • 分类超平面的位置:通过所有支持向量 x i x_i xi 和它们的拉格朗日乘子 α i ∗ \alpha_i^* αi 的加权和,分类器能够确定分类超平面的位置。偏置 b ∗ b^* b 确保分类超平面不会偏向某一类,而是在特征空间中保持平衡。

  • 支持向量之间的影响:支持向量之间的内积 ( x i ⋅ x ) (x_i \cdot x) (xix) 反映了它们对分类边界的相对影响。支持向量 x i x_i xi 对于待分类点 x x x 的影响通过内积体现出来,从而决定了分类的结果。

5. 公式在 SVM 中的作用

公式 9-32 是支持向量机中用于定义分类超平面的关键公式之一。通过这个公式,我们可以描述分类器的超平面并决定哪些点位于超平面上,从而确定分类器的分类边界。

  • 定义分类边界:公式 9-32 描述了分类超平面的方程。通过这个方程,我们可以判断哪些点位于分类边界上,并且确保分类器能够准确划分正类和负类样本。

  • 构造分类器:有了分类超平面的方程后,分类器就可以用来对新样本进行分类。如果一个样本点满足公式 9-32,它就是位于分类边界上的点;否则,根据结果的符号可以判断它属于正类还是负类。

6. 分类决策函数

公式 9-32 还与支持向量机的分类决策函数相关联。分类决策函数 f ( x ) f(x) f(x) 定义为:
f ( x ) = w T x + b = ∑ i = 1 N α i ∗ y i ( x i ⋅ x ) + b ∗ f(x) = w^T x + b = \sum_{i=1}^{N} \alpha_i^* y_i (x_i \cdot x) + b^* f(x)=wTx+b=i=1Nαiyi(xix)+b

根据决策函数的符号,我们可以判断点 x x x 的类别:

  • 如果 f ( x ) > 0 f(x) > 0 f(x)>0,则 x x x 被分类为正类( y = + 1 y = +1 y=+1)。
  • 如果 f ( x ) < 0 f(x) < 0 f(x)<0,则 x x x 被分类为负类( y = − 1 y = -1 y=1)。
  • 如果 f ( x ) = 0 f(x) = 0 f(x)=0,则 x x x 恰好位于分类超平面上。

7. 总结

公式 9-32 表达了支持向量机的分类超平面的方程,用于确定分类器的决策边界。通过这个公式,我们可以描述位于分类超平面上的点,并利用内积来确定支持向量之间的相似性,从而构造出准确的分类超平面。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com