您的位置:首页 > 游戏 > 手游 > 深圳网站优化价格_国内外贸seo推广平台排名_杭州网站推广平台_有没有永久免费crm

深圳网站优化价格_国内外贸seo推广平台排名_杭州网站推广平台_有没有永久免费crm

2024/12/23 4:55:46 来源:https://blog.csdn.net/weixin_44478317/article/details/142791454  浏览:    关键词:深圳网站优化价格_国内外贸seo推广平台排名_杭州网站推广平台_有没有永久免费crm
深圳网站优化价格_国内外贸seo推广平台排名_杭州网站推广平台_有没有永久免费crm

Abstract

Existing NeRF-based methods for large scene reconstruction often have limitations in visual quality and rendering speed. While the recent 3D Gaussian Splatting works well on small-scale and object-centric scenes, scaling it up to large scenes poses challenges due to limited video memory, long optimization time, and noticeable appearance variations.

To address these challenges, we present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.

We propose a progressive partitioning strategy to divide a large scene into multiple cells, where the training cameras and point cloud are properly distributed with an airspace-aware visibility criterion. These cells are merged into a complete scene after parallel optimization.

提出一种渐进的划分策略,将一个大场景划分为多个单元,其中训练相机和点云以空域感知的可见性准则进行合理的分布。这些单元经过并行优化后合并为一个完整的场景。

We also introduce decoupled appearance modeling into the optimization process to reduce appearance variations in the rendered images.

还将解耦的外观建模引入到优化过程中,以减少渲染图像中的外观变化。

Our approach outperforms existing NeRF-based methods and achieves SOTA results on multiple large scene datasets, enabling fast optimization and high-fidelity real-time rendering.

Project page

Figure

Figure 1

Renderings of three SOTA methods and our VastGa

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com