您的位置:首页 > 游戏 > 游戏 > 香港公司注册处官方网站_b2b电子商务平台举例_深圳推广系统_软文营销案例200字

香港公司注册处官方网站_b2b电子商务平台举例_深圳推广系统_软文营销案例200字

2024/11/16 13:06:34 来源:https://blog.csdn.net/Glass_Gun/article/details/142391121  浏览:    关键词:香港公司注册处官方网站_b2b电子商务平台举例_深圳推广系统_软文营销案例200字
香港公司注册处官方网站_b2b电子商务平台举例_深圳推广系统_软文营销案例200字

autograd – 自动求导系统

torch.autograd

autograd

torch.autograd.backward

功能:自动求取梯度

  • tensor:用于求导的张量,如loss
  • retain_graph:保存计算图
  • create_graph:创建导数计算图,用于高阶求导
  • grad_tensors:多梯度权重

torch.autograd.grad

功能:求取梯度

  • outputs:用于求导的张量,如loss
  • inputs:需要梯度的张量
  • create_graph:创建导数计算图,用于高阶求导
  • retain_graph:保存计算图
  • grad_outputs:多梯度权重

autograd小贴士

  1. 梯度不自动清零
  2. 依赖于叶子结点的结点,requires_grad 默认为为 True
  3. 叶子结点不可执行 in-place

逻辑回归

Logistic Regression

基本概念

逻辑回归是线性二分类模型
在这里插入图片描述

线性回归与逻辑回归的区别

线性回归是分析自变量x与因变量y(标量)之间关系的方法
逻辑回归是分析自变量x与因变量y(概率)之间关系的方法
在这里插入图片描述
在这里插入图片描述

机器学习模型训练步骤

在这里插入图片描述
PyTorch 构建模型需要 5 大步骤:

  • 数据:包括数据读取,数据清洗,进行数据划分和数据预处理,比如读取图片如何预处理及数据增强。
  • 模型:包括构建模型模块,组织复杂网络,初始化网络参数,定义网络层。
  • 损失函数:包括创建损失函数,设置损失函数超参数,根据不同任务选择合适的损失函数。
  • 优化器:包括根据梯度使用某种优化器更新参数,管理模型参数,管理多个参数组实现不同学习率,调整学习率。
  • 迭代训练:组织上面 4 个模块进行反复训练。包括观察训练效果,绘制 Loss/ Accuracy 曲线,用 TensorBoard 进行可视化分析。

参考链接

PyTorch 学习笔记

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com