您的位置:首页 > 游戏 > 手游 > 理解高并发

理解高并发

2024/12/23 8:25:20 来源:https://blog.csdn.net/m0_62943934/article/details/142252765  浏览:    关键词:理解高并发

文章目录

  • 1、如何理解高并发
  • 2、高并发的关键指标
  • 3、高并发系统设计的目标是什么?
    • 1_宏观目标
    • 2_微观目标
      • 1.性能指标
      • 2.可用性指标
      • 3.可扩展性指标
  • 4、高并发的实践方案有哪些?
    • 1_通用的设计方法
      • 1.纵向扩展(scale-up)
      • 2.横向扩展(scale-out)
    • 2 _具体的实践方案
      • 1.高性能的实践方案
      • 2.高可用的实践方案
      • 3.高扩展的实践方案
  • 5、总结

1、如何理解高并发

高并发意味着大流量,需要运用技术手段抵抗流量的冲击,这些手段好比操作流量,能让流量更平稳地被系统所处理,带给用户更好的体验。我们常见的高并发场景有:淘宝的双11、春运时的抢票、微博大V的热点新闻等。除了这些典型事情,每秒几十万请求的秒杀系统、每天千万级的订单系统、每天亿级日活的信息流系统等,都可以归为高并发。很显然,上面谈到的高并发场景,并发量各不相同,那到底多大并发才算高并发呢?

  1. 不能只看数字,要看具体的业务场景。不能说10W QPS的秒杀是高并发,而1W QPS的信息流就不是高并发。信息流场景涉及复杂的推荐模型和各种人工策略,它的业务逻辑可能比秒杀场景复杂10倍不止。因此,不在同一个维度,没有任何比较意义。
  2. 业务都是从0到1做起来的,并发量和QPS只是参考指标,最重要的是:在业务量逐渐变成原来的10倍、100倍的过程中,你是否用到了高并发的处理方法去演进你的系统,从架构设计、编码实现、甚至产品方案等维度去预防和解决高并发引起的问题?而不是一味的升级硬件、加机器做水平扩展。

此外,各个高并发场景的业务特点完全不同:有读多写少的信息流场景、有读多写多的交易场景,那是否有通用的技术方案解决不同场景的高并发问题呢?我觉得大的思路可以借鉴,别人的方案也可以参考,但是真正落地过程中,细节上还会有无数的坑。另外,由于软硬件环境、技术栈、以及产品逻辑都没法做到完全一致,这些都会导致同样的业务场景,就算用相同的技术方案也会面临不同的问题,这些坑还得一个个趟。

2、高并发的关键指标

  1. 响应时间(Response Time):从第一次发出请求到收到系统完整响应数据数据所需时间。直接反映系统响应的快慢。

  2. 吞吐量(Throughput):单位时间内系统所处理的用户请求数。直接反映系统的负载能力。

    • 采用“请求数/秒”方式的吞吐量,瓶颈主要来源于应用服务器和应用本身。
    • 采用“字节数/秒”方式的吞吐量,瓶颈主要来源于网络基础设施、服务器架构和服务器约束等。
  3. 每秒请求数(QPS):服务器在一秒内共处理了多少个请求,主要用于表示“读”请求。

  4. 每秒事务数(TPS):即服务器每秒处理的事务数。(一个事务包括“客户机向服务器发送请求 + 服务器响应”的过程)

  5. 访问量(PV):用户每对网站中的1个网页访问1次被记录1次

  6. 独立访客(UV):访问某个站点或点击某个链接的不同IP地址数。(即在同一天内,UV只记录第一次进入网站的具有独立IP地址的访问者,在同一天内访问者再次访问该网站则不计数。)

3、高并发系统设计的目标是什么?

先搞清楚高并发系统设计的目标,在此基础上再讨论设计方案和实践经验才有意义和针对性。

1_宏观目标

高并发绝不意味着只追求高性能,这是很多人片面的理解。从宏观角度看,高并发系统设计的目标有三个:高性能、高可用,以及高可扩展

  1. 高性能:性能体现了系统的并行处理能力,在有限的硬件投入下,提高性能意味着节省成本。同时,性能也反映了用户体验,响应时间分别是100毫秒和1秒,给用户的感受是完全不同的。
  2. 高可用:表示系统可以正常服务的时间。一个全年不停机、无故障;另一个隔三差五出线上事故、宕机,用户肯定选择前者。另外,如果系统只能做到90%可用,也会大大拖累业务。
  3. 高扩展:表示系统的扩展能力,流量高峰时能否在短时间内完成扩容,更平稳地承接峰值流量,比如双11活动、明星离婚等热点事件。

这3个目标是需要通盘考虑的,因为它们互相关联、甚至也会相互影响。比如说:考虑系统的扩展能力,你会将服务设计成无状态的,这种集群设计保证了高扩展性,其实也间接提升了系统的性能和可用性。再比如说:为了保证可用性,通常会对服务接口进行超时设置,以防大量线程阻塞在慢请求上造成系统雪崩,那超时时间设置成多少合理呢?一般,我们会参考依赖服务的性能表现进行设置。

2_微观目标

再从微观角度来看,高性能、高可用和高扩展又有哪些具体的指标来衡量?为什么会选择这些指标呢?

1.性能指标

通过性能指标可以度量目前存在的性能问题,同时作为性能优化的评估依据。一般来说,会采用一段时间内的接口响应时间作为指标。

  1. 平均响应时间:最常用,但是缺陷很明显,对于慢请求不敏感。比如1万次请求,其中9900次是 1ms,100次是100ms,则平均响应时间为1.99ms,虽然平均耗时仅增加了0.99ms,但是1%请求的响应时间已经增加了100倍。

  2. TP90、TP99等分位值:将响应时间按照从小到大排序,TP90表示排在第90分位的响应时间, 分位值越大,对慢请求越敏感。
    在这里插入图片描述

  3. 吞吐量:和响应时间呈反比,比如响应时间是1ms,则吞吐量为每秒1000次。

通常,设定性能目标时会兼顾吞吐量和响应时间,比如这样表述:在每秒1万次请求下,AVG控制在50ms以下,TP99控制在100ms以下。对于高并发系统,AVG和TP分位值必须同时要考虑。另外,从用户体验角度来看,200毫秒被认为是第一个分界点,用户感觉不到延迟,1秒是第二个分界点,用户能感受到延迟,但是可以接受。因此,对于一个健康的高并发系统,TP99应该控制在200毫秒以内,TP999 或者TP9999 应该控制在1秒以内。

2.可用性指标

高可用性是指系统具有较高的无故障运行能力,可用性 = 平均故障时间 / 系统总运行时间,一般使用几个9来描述系统的可用性。

可能性年故障时间日故障时间
90% (1个9)36.5天2.4小时
99% (2个9)3.65天14.4分钟
99.9% (3个9)8小时1.44分钟
99.99% (4个9)53分钟8.6秒
99.999% (5个9)5分钟0.86秒

对于高并发系统来说,最基本的要求是:保证3个9或者4个9。原因很简单,如果你只能做到2个9,意味着有1%的故障时间,像一些大公司每年动辄千亿以上的GMV或者收入,1%就是10亿级别的业务影响。

3.可扩展性指标

面对突发流量,不可能临时改造架构,最快的方式就是增加机器来线性提高系统的处理能力。

对于业务集群或者基础组件来说,扩展性 = 性能提升比例 / 机器增加比例,理想的扩展能力是:资源增加几倍,性能提升几倍。通常来说,扩展能力要维持在70%以上。

但是从高并发系统的整体架构角度来看,扩展的目标不仅仅是把服务设计成无状态就行了,因为当流量增加10倍,业务服务可以快速扩容10倍,但是数据库可能就成为了新的瓶颈。像MySQL这种有状态的存储服务通常是扩展的技术难点,如果架构上没提前做好规划(垂直和水平拆分),就会涉及到大量数据的迁移。

因此,高扩展性需要考虑:服务集群、数据库、缓存和消息队列等中间件、负载均衡、带宽、依赖的第三方等,当并发达到某一个量级后,上述每个因素都可能成为扩展的瓶颈点。

4、高并发的实践方案有哪些?

了解了高并发设计的3大目标后,再系统性总结下高并发的设计方案,会从以下两部分展开:先总结下通用的设计方法,然后再围绕高性能、高可用、高扩展分别给出具体的实践方案。

1_通用的设计方法

通用的设计方法主要是从 「纵向」和「横向」两个维度 出发,俗称高并发处理的两板斧:纵向扩展和横向扩展

1.纵向扩展(scale-up)

它的目标是提升单机的处理能力,方案又包括:

  1. 提升单机的硬件性能:通过增加内存、CPU核数、存储容量、或者将磁盘升级成SSD等堆硬件的方式来提升。
  2. 提升单机的软件性能:使用缓存减少IO次数,使用并发或者异步的方式增加吞吐量。

2.横向扩展(scale-out)

因为单机性能总会存在极限,所以最终还需要引入横向扩展,通过集群部署以进一步提高并发处理能
力,又包括以下2个方向:

  1. 做好分层架构:这是横向扩展的提前,因为高并发系统往往业务复杂,通过分层处理可以简化复杂
    问题,更容易做到横向扩展。
    在这里插入图片描述

    上面这种图是互联网最常见的分层架构,当然真实的高并发系统架构会在此基础上进一步完善。比如会做动静分离并引入CDN,反向代理层可以是LVS+Nginx,Web层可以是统一的API网关,业务服务层可进一步按垂直业务做微服务化,存储层可以是各种异构数据库。

  2. 各层进行水平扩展:无状态水平扩容,有状态做分片路由。业务集群通常能设计成无状态的,而数据库和缓存往往是有状态的,因此需要设计分区键做好存储分片,当然也可以通过主从同步、读写分离的方案提升读性能。

2 _具体的实践方案

下面再结合我的个人经验,针对高性能、高可用、高扩展3个方面,总结下可落地的实践方案。

1.高性能的实践方案

  1. 集群部署,通过负载均衡减轻单机压力。
  2. 多级缓存,包括静态数据使用CDN、本地缓存、分布式缓存等,以及对缓存场景中的热点key、缓存穿透、缓存并发、数据一致性等问题的处理。
  3. 分库分表和索引优化,以及借助搜索引擎解决复杂查询问题。
  4. 考虑NoSQL数据库的使用,比如HBase、TiDB等,但是团队必须熟悉这些组件,且有较强的运维能力。
  5. 异步化,将次要流程通过多线程、MQ、甚至延时任务进行异步处理。
  6. 限流,需要先考虑业务是否允许限流(比如秒杀场景是允许的),包括前端限流、Nginx接入层的限流、服务端的限流。
  7. 对流量进行削峰填谷,通过MQ承接流量。
  8. 并发处理,通过多线程将串行逻辑并行化。
  9. 预计算,比如抢红包场景,可以提前计算好红包金额缓存起来,发红包时直接使用即可。
  10. 缓存预热,通过异步任务提前预热数据到本地缓存或者分布式缓存中。
  11. 减少IO次数,比如数据库和缓存的批量读写、RPC的批量接口支持、或者通过冗余数据的方式干掉RPC调用。
  12. 减少IO时的数据包大小,包括采用轻量级的通信协议、合适的数据结构、去掉接口中的多余字段、减少缓存key的大小、压缩缓存value等。
  13. 程序逻辑优化,比如将大概率阻断执行流程的判断逻辑前置、For循环的计算逻辑优化,或者采用更高效的算法。
  14. 各种池化技术的使用和池大小的设置,包括HTTP请求池、线程池(考虑CPU密集型还是IO密集型设置核心参数)、数据库和Redis连接池等。
  15. JVM优化,包括新生代和老年代的大小、GC算法的选择等,尽可能减少GC频率和耗时。
  16. 锁选择,读多写少的场景用乐观锁,或者考虑通过分段锁的方式减少锁冲突。

上述方案无外乎从计算和 IO 两个维度考虑所有可能的优化点,需要有配套的监控系统实时了解当前的性能表现,并支撑你进行性能瓶颈分析,然后再遵循二八原则,抓主要矛盾进行优化。

2.高可用的实践方案

  1. 对等节点的故障转移,Nginx和服务治理框架均支持一个节点失败后访问另一个节点。
  2. 非对等节点的故障转移,通过心跳检测并实施主备切换(比如redis的哨兵模式或者集群模式、MySQL的主从切换等)。
  3. 接口层面的超时设置、重试策略和幂等设计。
  4. 降级处理:保证核心服务,牺牲非核心服务,必要时进行熔断;或者核心链路出问题时,有备选链
    路。
  5. 限流处理:对超过系统处理能力的请求直接拒绝或者返回错误码。
  6. MQ场景的消息可靠性保证,包括producer端的重试机制、broker侧的持久化、consumer端的 ack机制等。
  7. 灰度发布,能支持按机器维度进行小流量部署,观察系统日志和业务指标,等运行平稳后再推全量。
  8. 监控报警:全方位的监控体系,包括最基础的CPU、内存、磁盘、网络的监控,以及Web服务器、JVM、数据库、各类中间件的监控和业务指标的监控。
  9. 灾备演练:类似当前的“混沌工程”,对系统进行一些破坏性手段,观察局部故障是否会引起可用性问题。

高可用的方案主要从冗余、取舍、系统运维3个方向考虑,同时需要有配套的值班机制和故障处理流程,当出现线上问题时,可及时跟进处理。

3.高扩展的实践方案

  1. 合理的分层架构:比如上面谈到的互联网最常见的分层架构,另外还能进一步按照数据访问层、业务逻辑层对微服务做更细粒度的分层(但是需要评估性能,会存在网络多一跳的情况)。
  2. 存储层的拆分:按照业务维度做垂直拆分、按照数据特征维度进一步做水平拆分(分库分表)。
  3. 业务层的拆分:最常见的是按照业务维度拆(比如电商场景的商品服务、订单服务等),也可以按照核心接口和非核心接口拆,还可以按照请求源拆(比如To C和To B,APP和H5)。

5、总结

高并发是现代系统中不可避免的挑战之一。理解高并发的概念和面临的挑战,对于设计和优化系统至关重要。通过合理应用负载均衡、缓存机制、异步处理、分布式系统等技术手段,可以有效地提升系统的并发处理能力,保证系统的稳定性和高效性。面对不断增长的用户需求和业务场景,高并发处理能力将继续发挥着重要作用,推动着技术的进步和创新。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com