您的位置:首页 > 游戏 > 游戏 > Spark-driver和executor启动过程

Spark-driver和executor启动过程

2024/11/17 18:29:03 来源:https://blog.csdn.net/lu070828/article/details/141355638  浏览:    关键词:Spark-driver和executor启动过程

一、上下文

《Spark-SparkSubmit详细过程》详细分析了从脚本提交任务后driver是如何调用到自己编写的Spark代码的,而我们的Spark代码在运行前必须准备好分布式资源,接下来我们就分析下资源是如何分配的

二、Spark代码示例

我们以一个简单的WordCount程序为例,来分析Spark后端是如何为这个程序分配资源的

object WordCount {def main(args: Array[String]): Unit = {//可以通过 SparkConf 为 Spark 绝大多数配置设置参数,且这些参数的优先级要高于系统属性//注意:一旦 SparkConf 传递给 Spark 后,就无法再对其进行修改,因为Spark不支持运行时修改val conf = new SparkConf().setAppName("WordCount")//Spark 的主要入口点 SparkContext 表示到Spark集群的连接,用于在该集群上创建RDD、累加器、广播变量//每个JVM只能有一个 SparkContext 处于活动状态val sc = new SparkContext(conf)//从HDFS、本地文件系统(在所有节点上都可用)或任何Hadoop支持的文件系统URI读取文本文件,并将其作为字符串的RDD返回。val sourceRdd = sc.textFile("file/word_count_data.txt")//原始一行数据:js,c,vba,json,xml//flatMap将每行数据按照逗号分割,得到每个单词 形成 (单词1) (单词2) (单词1) ... 的格式//map将每个单词的次数都赋值成1形成 (单词1,1) (单词2,1) (单词1,次数) ... 的格式//reduceByKey将相同单词中的次数进行累加val resultRdd = sourceRdd.flatMap(_.split(",")).map(x=>{(x,1)}).reduceByKey(_+_)//打印结果resultRdd.foreach(println)//停止SparkContextsc.stop()}

SparkConf 是对该程序的一个属性设置,且支持链式设置,会覆盖默认的系统属性。一旦程序开始运行就不可以对其再修改了。

SparkContext是程序与Spark集群连接的入口,可以用于在该集群上创建RDD、广播变量、累加器等等,那么RDD运行所需的资源肯定是在创建SparkContext时就已经具备好的。下面我们看看SparkContext中是如何结合spark-submit参数来协调资源的

三、SparkContext

class SparkContext(config: SparkConf) extends Logging {//创建一个从系统属性加载设置的SparkContext(例如,使用./bin/spark-submit启动时)def this() = this(new SparkConf())//......省略.......//私有变量。这些变量保留了上下文的内部状态,外部世界无法访问。它们是可变的//因为我们想提前将它们初始化为一个中性值,这样在构造函数仍在运行时调用“stop()”是安全的。//只列举重要的一些属性//支持应用的个性化配置private var _conf: SparkConf = _//一个正在运行的Spark实例的所有运行时环境对象(无论是master还是worker),包括序列化器、RpcEnv、块管理器、映射输出跟踪器等。目前,Spark代码通过全局变量查找SparkEnv,因此所有线程都可以访问相同的SparkEnv。它可以通过SparkEnv.get访问(例如在创建SparkContext之后)//我们后面单独分析下它private var _env: SparkEnv = _//用于调度系统的后端接口,允许在TaskSchedulerImpl下插入不同的系统。我们假设一个类似Mesos的模型,当机器可用时,应用程序会获得资源供应,并可以在机器上启动任务。private var _schedulerBackend: SchedulerBackend = _//低级任务调度程序接口,目前由[[org.apache.sspark.scheduler.TaskSchedulerImpl]]专门实现。 //此接口允许插入不同的任务调度器。每个TaskScheduler都为单个SparkContext安排任务。//这些调度器从DAGScheduler获取每个阶段提交给它们的任务集,并负责将任务发送到集群、运行它们、在出现故障时重试,以及缓解延迟。他们将事件返回给DAGScheduler。private var _taskScheduler: TaskScheduler = _//一个常住在 Driver端的 HeartbeatReceiver 通信端点 ,用来接收所有 executors 的心跳private var _heartbeatReceiver: RpcEndpointRef = _//实现面向 stage 调度的高级调度层。它为每个作业计算一个 stage 的DAG,//跟踪哪些RDD和stage输出被物化,并找到运行作业的最小时间表。//然后,它将stage作为TaskSet提交给在集群上运行它们的底层TaskScheduler实现。//TaskSet包含完全独立的任务,这些任务可以根据集群上已有的数据@volatile private var _dagScheduler: DAGScheduler = _try {//......省略.......//创建SparkEnv_env = createSparkEnv(_conf, isLocal, listenerBus)//设置 常住driver端的 _heartbeatReceiver 的 Endpoint_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))// 创建并启动调度程序val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)_schedulerBackend = sched_taskScheduler = ts_dagScheduler = new DAGScheduler(this)_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)//启动任务调度器_taskScheduler.start()//......省略.......  //基于给定的主URL创建任务调度器。返回调度器后端和任务调度器的 2-tupleprivate def createTaskScheduler(...){//......省略.......  master match {case "local" =>case LOCAL_N_REGEX(threads) =>case LOCAL_N_FAILURES_REGEX(threads, maxFailures) =>case SPARK_REGEX(sparkUrl) =>//创建一个 任务调度实现类 TaskSchedulerImplval scheduler = new TaskSchedulerImpl(sc)val masterUrls = sparkUrl.split(",").map("spark://" + _)//创建一个 StandaloneSchedulerBackend 是 SchedulerBackend 的子类val backend = new StandaloneSchedulerBackend(scheduler, sc, masterUrls)//初始化 任务调度器 scheduler.initialize(backend)(backend, scheduler)case LOCAL_CLUSTER_REGEX(numWorkers, coresPerWorker, memoryPerWorker) =>case masterUrl =>}}

四、TaskSchedulerImpl

private[spark] class TaskSchedulerImpl(val sc: SparkContext,val maxTaskFailures: Int,isLocal: Boolean = false,clock: Clock = new SystemClock)extends TaskScheduler with Logging {//初始化def initialize(backend: SchedulerBackend): Unit = {this.backend = backend//构建调度器   默认是 FIFO 调度 可以通过 spark.scheduler.mode 进行配置schedulableBuilder = {schedulingMode match {case SchedulingMode.FIFO =>new FIFOSchedulableBuilder(rootPool)case SchedulingMode.FAIR =>new FairSchedulableBuilder(rootPool, sc)case _ =>throw new IllegalArgumentException(s"Unsupported $SCHEDULER_MODE_PROPERTY: " +s"$schedulingMode")}}schedulableBuilder.buildPools()}//启动调度程序override def start(): Unit = {//SparkContext中创建的是 StandaloneSchedulerBackend 因此会调用 它的 start()//StandaloneSchedulerBackend  又会调用其父类CoarseGrainedSchedulerBackend 的 start() backend.start()if (!isLocal && conf.get(SPECULATION_ENABLED)) {logInfo("Starting speculative execution thread")speculationScheduler.scheduleWithFixedDelay(() => Utils.tryOrStopSparkContext(sc) { checkSpeculatableTasks() },SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)}}
}

五、CoarseGrainedSchedulerBackend 

//等待粗粒度执行器连接的调度程序后端。此后端在Spark作业期间保留每个执行器,而不是在任务完成时放弃执行器,
//并要求调度器为每个新任务启动一个新的执行器。执行器可以通过多种方式启动,例如粗粒度Mesos模式的Mesos任务或Spark独立部署模式(Spark.deploy.*)的独立进程。
class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, val rpcEnv: RpcEnv)extends ExecutorAllocationClient with SchedulerBackend with Logging {//这里会创建并注册一个 DriverEndpoint ,且 DriverEndpoint的 onStart() 方法会执行val driverEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME, createDriverEndpoint())protected def createDriverEndpoint(): DriverEndpoint = new DriverEndpoint()override def start(): Unit = {}class DriverEndpoint extends IsolatedRpcEndpoint with Logging {override def onStart(): Unit = {// 定期恢复下 以允许延迟调度工作val reviveIntervalMs = conf.get(SCHEDULER_REVIVE_INTERVAL).getOrElse(1000L)reviveThread.scheduleAtFixedRate(() => Utils.tryLogNonFatalError {Option(self).foreach(_.send(ReviveOffers))}, 0, reviveIntervalMs, TimeUnit.MILLISECONDS)}override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {case RegisterExecutor(executorId, executorRef, hostname, cores, logUrls,attributes, resources, resourceProfileId) =>if (executorDataMap.contains(executorId)) {context.sendFailure(new IllegalStateException(s"Duplicate executor ID: $executorId"))} else if (scheduler.excludedNodes.contains(hostname) ||isExecutorExcluded(executorId, hostname)) {// 如果集群管理器在被排除的节点上为我们提供了一个Executor(因为在我们通知它我们的排除之前,它已经开始分配这些资源,或者如果它忽略了我们的排除),那么我们会立即拒绝该ExecutorlogInfo(s"Rejecting $executorId as it has been excluded.")context.sendFailure(new IllegalStateException(s"Executor is excluded due to failures: $executorId"))} else {//如果Executor 的rpc-env没有监听传入连接,则“hostPort”将为null,应使用客户端连接联系Executor 。val executorAddress = if (executorRef.address != null) {executorRef.address} else {context.senderAddress}logInfo(s"Registered executor $executorRef ($executorAddress) with ID $executorId, " +s" ResourceProfileId $resourceProfileId")addressToExecutorId(executorAddress) = executorIdtotalCoreCount.addAndGet(cores)totalRegisteredExecutors.addAndGet(1)val resourcesInfo = resources.map { case (rName, info) =>// 这必须同步,因为在请求Executor时会读取此块中突变的变量val numParts = scheduler.sc.resourceProfileManager.resourceProfileFromId(resourceProfileId).getNumSlotsPerAddress(rName, conf)(info.name, new ExecutorResourceInfo(info.name, info.addresses, numParts))}val data = new ExecutorData(executorRef, executorAddress, hostname,0, cores, logUrlHandler.applyPattern(logUrls, attributes), attributes,resourcesInfo, resourceProfileId, registrationTs = System.currentTimeMillis())// This must be synchronized because variables mutated// in this block are read when requesting executorsCoarseGrainedSchedulerBackend.this.synchronized {executorDataMap.put(executorId, data)if (currentExecutorIdCounter < executorId.toInt) {currentExecutorIdCounter = executorId.toInt}}listenerBus.post(SparkListenerExecutorAdded(System.currentTimeMillis(), executorId, data))// Note: some tests expect the reply to come after we put the executor in the mapcontext.reply(true)}}override def receive: PartialFunction[Any, Unit] = {//启动 executor case LaunchedExecutor(executorId) =>executorDataMap.get(executorId).foreach { data =>data.freeCores = data.totalCores}//仅仅为一个 executor 提供虚假资源 offer makeOffers(executorId)}}}

六、StandaloneSchedulerBackend

//Spark独立集群管理器的[[SchedulerBackend]]实现。
private[spark] class StandaloneSchedulerBackend(scheduler: TaskSchedulerImpl,sc: SparkContext,masters: Array[String])extends CoarseGrainedSchedulerBackend(scheduler, sc.env.rpcEnv)with StandaloneAppClientListenerwith Logging {override def start(): Unit = {super.start()//调度器后端应仅在客户端模式下尝试连接到启动器。//在集群模式下,将应用程序提交给Master的代码需要连接到启动器。if (sc.deployMode == "client") {launcherBackend.connect()}//executors 中的 endpoint 需要持有 driver的地址 用于和 driver通信val driverUrl = RpcEndpointAddress(sc.conf.get(config.DRIVER_HOST_ADDRESS),sc.conf.get(config.DRIVER_PORT),CoarseGrainedSchedulerBackend.ENDPOINT_NAME).toStringval args = Seq("--driver-url", driverUrl,"--executor-id", "{{EXECUTOR_ID}}","--hostname", "{{HOSTNAME}}","--cores", "{{CORES}}","--app-id", "{{APP_ID}}","--worker-url", "{{WORKER_URL}}")val extraJavaOpts = sc.conf.get(config.EXECUTOR_JAVA_OPTIONS).map(Utils.splitCommandString).getOrElse(Seq.empty)val classPathEntries = sc.conf.get(config.EXECUTOR_CLASS_PATH).map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)val libraryPathEntries = sc.conf.get(config.EXECUTOR_LIBRARY_PATH).map(_.split(java.io.File.pathSeparator).toSeq).getOrElse(Nil)//使用一些必要的配置启动 executors ,以便在调度程序中注册val sparkJavaOpts = Utils.sparkJavaOpts(conf, SparkConf.isExecutorStartupConf)val javaOpts = sparkJavaOpts ++ extraJavaOpts// executors 端的主类 CoarseGrainedExecutorBackendval command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend",args, sc.executorEnvs, classPathEntries ++ testingClassPath, libraryPathEntries, javaOpts)val webUrl = sc.ui.map(_.webUrl).getOrElse("")val coresPerExecutor = conf.getOption(config.EXECUTOR_CORES.key).map(_.toInt)// 如果我们使用动态分配,现在将初始执行器限制设置为0。ExecutorDallocationManager稍后会将实际的初始限额发送给Master。val initialExecutorLimit =if (Utils.isDynamicAllocationEnabled(conf)) {Some(0)} else {None}val executorResourceReqs = ResourceUtils.parseResourceRequirements(conf,config.SPARK_EXECUTOR_PREFIX)//这里有一个 ApplicationDescription 之前有要给 DriverDescription//可以想到 它是用来启动一个 Application 用的val appDesc = ApplicationDescription(sc.appName, maxCores, sc.executorMemory, command,webUrl, sc.eventLogDir, sc.eventLogCodec, coresPerExecutor, initialExecutorLimit,resourceReqsPerExecutor = executorResourceReqs)//创建一个 StandaloneAppClient//允许应用程序与Spark独立集群管理器对话。获取集群事件的主URL、应用程序描述和侦听器,并在发生各种事件时回调侦听器。client = new StandaloneAppClient(sc.env.rpcEnv, masters, appDesc, this, conf)//启动它client.start()launcherBackend.setState(SparkAppHandle.State.SUBMITTED)waitForRegistration()launcherBackend.setState(SparkAppHandle.State.RUNNING)}}

七、StandaloneAppClient

private[spark] class StandaloneAppClient(...){private val masterRpcAddresses = masterUrls.map(RpcAddress.fromSparkURL(_))private val REGISTRATION_TIMEOUT_SECONDS = 20private val REGISTRATION_RETRIES = 3private class ClientEndpoint(override val rpcEnv: RpcEnv) extends ThreadSafeRpcEndpointwith Logging {override def onStart(): Unit = {//向Master注册一个appregisterWithMaster(1)}//异步向所有 Master 注册。它将每隔 20 秒调用“registerWithMaster”,直到超过 3 次数。一旦我们成功连接到主机,所有调度工作和期货都将被取消。//thRetry表示这是第n次尝试向master注册。private def registerWithMaster(nthRetry: Int): Unit = {registerMasterFutures.set(tryRegisterAllMasters())registrationRetryTimer.set(registrationRetryThread.schedule(new Runnable {override def run(): Unit = {if (registered.get) {registerMasterFutures.get.foreach(_.cancel(true))registerMasterThreadPool.shutdownNow()} else if (nthRetry >= REGISTRATION_RETRIES) {markDead("All masters are unresponsive! Giving up.")} else {registerMasterFutures.get.foreach(_.cancel(true))registerWithMaster(nthRetry + 1)}}}, REGISTRATION_TIMEOUT_SECONDS, TimeUnit.SECONDS))}}private def tryRegisterAllMasters(): Array[JFuture[_]] = {for (masterAddress <- masterRpcAddresses) yield {registerMasterThreadPool.submit(new Runnable {override def run(): Unit = try {if (registered.get) {return}logInfo("Connecting to master " + masterAddress.toSparkURL + "...")val masterRef = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME)//向Master 发送 RegisterApplication 消息masterRef.send(RegisterApplication(appDescription, self))} catch {case ie: InterruptedException => // Cancelledcase NonFatal(e) => logWarning(s"Failed to connect to master $masterAddress", e)}})}}def start(): Unit = {// 只需启动一个rpcEndpoint;它将呼叫回听众//设置一个 AppClient 端点 ClientEndpoint 的 onstart 的方法会调起endpoint.set(rpcEnv.setupEndpoint("AppClient", new ClientEndpoint(rpcEnv)))}}

八、Master

private[deploy] class Master(...){//处理其他端点的消息override def receive: PartialFunction[Any, Unit] = {case RegisterApplication(description, driver) =>// TODO Prevent repeated registrations from some driverif (state == RecoveryState.STANDBY) {// ignore, don't send response} else {logInfo("Registering app " + description.name)//创建一个 appval app = createApplication(description, driver)//driver端添加app的持有 比如 在waitingApps 中添加 这个 app 为后续调度做准备registerApplication(app)logInfo("Registered app " + description.name + " with ID " + app.id)//持久化这个apppersistenceEngine.addApplication(app)//给driver返回一个已经注册的响应driver.send(RegisteredApplication(app.id, self))//调度,开始在 Worker 上 分配 executorsschedule()}}//创建一个appprivate def createApplication(desc: ApplicationDescription, driver: RpcEndpointRef):ApplicationInfo = {val now = System.currentTimeMillis()val date = new Date(now)val appId = newApplicationId(date)//且会自己执行 init()new ApplicationInfo(now, appId, desc, date, driver, defaultCores)}private def schedule(): Unit = {if (state != RecoveryState.ALIVE) {return}val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE))val numWorkersAlive = shuffledAliveWorkers.sizevar curPos = 0//启动等待的所有 driver 目前 driver 已经启动了,跳过这一步for (driver <- waitingDrivers.toList) { ...}//在Workers上启动ExecutorsstartExecutorsOnWorkers()}//调度并在 workers 上 启动 Executorsprivate def startExecutorsOnWorkers(): Unit = {//现在这是一个非常简单的FIFO调度器。依次对等待的 app 进行调度 for (app <- waitingApps) {val coresPerExecutor = app.desc.coresPerExecutor.getOrElse(1)// 如果剩余的内核小于coresPerExecutor,则不会分配剩余的内核// 简单理解就是 app剩下的核 要满足最少是一个 executor 所需的核数 ,也就是以 executor 所需的核数为单位 进行分配 executor 最少的 核数为 1if (app.coresLeft >= coresPerExecutor) {//过滤掉哪些 没有足够资源 的 worker 并按照剩余的核数倒序排序  来依次启动 executorsval usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE).filter(canLaunchExecutor(_, app.desc)).sortBy(_.coresFree).reverse    val appMayHang = waitingApps.length == 1 &&waitingApps.head.executors.isEmpty && usableWorkers.isEmptyif (appMayHang) {logWarning(s"App ${app.id} requires more resource than any of Workers could have.")}//真正去计算资源分配  返回要给 数组 里面有分配好的核数val assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)//现在我们已经决定了在每个worker上分配多少个内核,让我们分配它们for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {allocateWorkerResourceToExecutors(app, assignedCores(pos), app.desc.coresPerExecutor, usableWorkers(pos))}}}}//调度 executors 去 workers 上启动。返回一个数组,其中包含分配给每个worker的核心数。//有两种启动executor的模式。//    第一种方法试图将应用程序的executor分散到尽可能多的worker进程上,默认设置,更适合数据局部性//    第二种方法则相反(即在尽可能少的worker进程中启动它们)。//分配给每个executor的核心数量是可配置的。当显式设置此选项时,如果worker进程有足够的内核和内存,//则可以在同一worker进程上启动来自同一应用程序的多个executor。//否则,默认情况下,每个executor都会抓取worker上可用的所有内核,//  在这种情况下,在一次单独的计划迭代中,每个应用程序只能在每个worker上启动一个executor。//请注意,当未设置“spark.executor.cores”时,//  我们仍然可以在同一个worker上从同一个应用程序启动多个executor。//  假设appA和appB都有一个executor在worker1上运行,并且appA.coresLef>0,则appB完成并释放worker1上的所有内核,//  因此对于下一个计划迭代,appA启动一个新的executor,抓取worker1上所有空闲的内核,因此我们从运行在worker1的appA中获得多个executor。private def scheduleExecutorsOnWorkers(app: ApplicationInfo,usableWorkers: Array[WorkerInfo],spreadOutApps: Boolean): Array[Int] = {//每个Executor所需的核数val coresPerExecutor = app.desc.coresPerExecutor//每个Executor所需的最小核数val minCoresPerExecutor = coresPerExecutor.getOrElse(1)//每个worker一个Executorval oneExecutorPerWorker = coresPerExecutor.isEmpty//每个Executor所需的内存val memoryPerExecutor = app.desc.memoryPerExecutorMB//每个Executor所需的资源val resourceReqsPerExecutor = app.desc.resourceReqsPerExecutor//可用的worker数量val numUsable = usableWorkers.lengthval assignedCores = new Array[Int](numUsable) // 去每个worker上需要申请的核数val assignedExecutors = new Array[Int](numUsable) // 去每个worker上需要申请的executor数量var coresToAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)/**返回指定的worker是否可以为此app启动Executor */def canLaunchExecutorForApp(pos: Int): Boolean = {val keepScheduling = coresToAssign >= minCoresPerExecutorval enoughCores = usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutorval assignedExecutorNum = assignedExecutors(pos)//如果我们允许每个worker有多个executor,那么我们总是可以启动新的executor。//否则,如果这个worker上已经有一个executor,只需给它更多的内核。val launchingNewExecutor = !oneExecutorPerWorker || assignedExecutorNum == 0if (launchingNewExecutor) {val assignedMemory = assignedExecutorNum * memoryPerExecutorval enoughMemory = usableWorkers(pos).memoryFree - assignedMemory >= memoryPerExecutorval assignedResources = resourceReqsPerExecutor.map {req => req.resourceName -> req.amount * assignedExecutorNum}.toMapval resourcesFree = usableWorkers(pos).resourcesAmountFree.map {case (rName, free) => rName -> (free - assignedResources.getOrElse(rName, 0))}val enoughResources = ResourceUtils.resourcesMeetRequirements(resourcesFree, resourceReqsPerExecutor)val underLimit = assignedExecutors.sum + app.executors.size < app.executorLimitkeepScheduling && enoughCores && enoughMemory && enoughResources && underLimit} else {//我们正在为现有的执行器添加内核,因此无需检查内存和执行器限制keepScheduling && enoughCores}}//过滤可以启动executor 的workervar freeWorkers = (0 until numUsable).filter(canLaunchExecutorForApp)//对可以启动executor 的worker循环进行 executors 的分配while (freeWorkers.nonEmpty) {freeWorkers.foreach { pos =>var keepScheduling = truewhile (keepScheduling && canLaunchExecutorForApp(pos)) {coresToAssign -= minCoresPerExecutorassignedCores(pos) += minCoresPerExecutorif (oneExecutorPerWorker) {assignedExecutors(pos) = 1} else {assignedExecutors(pos) += 1}//分散app意味着将其executor分散到尽可能多的worker中。如果我们不分散,//那么我们应该继续在这个worker上调度executor,直到我们使用了它的所有资源。//否则,请转到下一个worker。 默认 keepScheduling  = true if (spreadOutApps) {keepScheduling = false}}}freeWorkers = freeWorkers.filter(canLaunchExecutorForApp)}assignedCores}//将Worke的资源分配给一个或多个Executor。private def allocateWorkerResourceToExecutors(app: ApplicationInfo,assignedCores: Int,coresPerExecutor: Option[Int],worker: WorkerInfo): Unit = {//如果指定了每个Executor的Cores,我们将分配给此worker的核心平均分配给Executor 没有余数。//否则,我们将启动一个Executor,获取此worker上所有分配的Cores。val numExecutors = coresPerExecutor.map { assignedCores / _ }.getOrElse(1)val coresToAssign = coresPerExecutor.getOrElse(assignedCores)//一个一个executor去worker上启动for (i <- 1 to numExecutors) {val allocated = worker.acquireResources(app.desc.resourceReqsPerExecutor)//这里面会创建一个 ExecutorDesc 作为 Executor 启动的描述 像之前的app、driver都有这个描述val exec = app.addExecutor(worker, coresToAssign, allocated)//启动ExecutorlaunchExecutor(worker, exec)app.state = ApplicationState.RUNNING}}private def launchExecutor(worker: WorkerInfo, exec: ExecutorDesc): Unit = {//在那个 worker 上启动 executor logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)worker.addExecutor(exec)//Master endpoint 向 worker endpoint 发送 LaunchExecutor 消息worker.endpoint.send(LaunchExecutor(masterUrl, exec.application.id, exec.id,exec.application.desc, exec.cores, exec.memory, exec.resources))//Master endpoint 向 driverendpoint 发送 ExecutorAdded消息exec.application.driver.send(ExecutorAdded(exec.id, worker.id, worker.hostPort, exec.cores, exec.memory))}}

九、Worker

private[deploy] class Worker(......extends ThreadSafeRpcEndpoint with Logging {override def receive: PartialFunction[Any, Unit] = synchronized {case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_, resources_) =>if (masterUrl != activeMasterUrl) {logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")} else if (decommissioned) {logWarning("Asked to launch an executor while decommissioned. Not launching executor.")} else {try {logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))// 创建 executor 的 本地工作目录val executorDir = new File(workDir, appId + "/" + execId)if (!executorDir.mkdirs()) {throw new IOException("Failed to create directory " + executorDir)}// 为执行者创建本地目录。这些通过SPARK_EXECUTOR_DIRS环境变量传递给executor,并在应用程序完成时由Worker删除。val appLocalDirs = appDirectories.getOrElse(appId, {val localRootDirs = Utils.getOrCreateLocalRootDirs(conf)val dirs = localRootDirs.flatMap { dir =>try {val appDir = Utils.createDirectory(dir, namePrefix = "executor")Utils.chmod700(appDir)Some(appDir.getAbsolutePath())} catch {...}}.toSeqdirs})appDirectories(appId) = appLocalDirs//管理一个executor流程的执行。这目前仅在standalone模式下使用。val manager = new ExecutorRunner(appId,execId,appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),cores_,memory_,self,workerId,webUi.scheme,host,webUi.boundPort,publicAddress,sparkHome,executorDir,workerUri,conf,appLocalDirs,ExecutorState.LAUNCHING,resources_)executors(appId + "/" + execId) = managermanager.start()coresUsed += cores_memoryUsed += memory_addResourcesUsed(resources_)} catch {......}}}}

十、ExecutorRunner

private[deploy] class ExecutorRunner(...){private[worker] def start(): Unit = {//准备一个线程启动 executor workerThread = new Thread("ExecutorRunner for " + fullId) {override def run(): Unit = { fetchAndRunExecutor() }}//线程启动 fetchAndRunExecutor() 执行 :下载并运行应用程序描述中描述的executor //第6步中封装的启动类为 org.apache.spark.executor.CoarseGrainedExecutorBacken//下面我们看看 executor 中做了什么workerThread.start()......}}

十一、CoarseGrainedExecutorBacken(executor进程主类)

private[spark] object CoarseGrainedExecutorBackend extends Logging {def main(args: Array[String]): Unit = {val createFn: (RpcEnv, Arguments, SparkEnv, ResourceProfile) =>CoarseGrainedExecutorBackend = { case (rpcEnv, arguments, env, resourceProfile) =>new CoarseGrainedExecutorBackend(rpcEnv, arguments.driverUrl, arguments.executorId,arguments.bindAddress, arguments.hostname, arguments.cores, arguments.userClassPath.toSeq,env, arguments.resourcesFileOpt, resourceProfile)}//解析参数并运行run(parseArguments(args, this.getClass.getCanonicalName.stripSuffix("$")), createFn)System.exit(0)}def run(arguments: Arguments,backendCreateFn: (RpcEnv, Arguments, SparkEnv, ResourceProfile) =>CoarseGrainedExecutorBackend): Unit = {//......// 创建 RpcEnv 获取 driver端的 Spark properties.val executorConf = new SparkConfval fetcher = RpcEnv.create("driverPropsFetcher",arguments.bindAddress,arguments.hostname,-1,executorConf,new SecurityManager(executorConf),numUsableCores = 0,clientMode = true)//尝试3次获取 driver Endpoint 引用var driver: RpcEndpointRef = nullval nTries = 3for (i <- 0 until nTries if driver == null) {try {driver = fetcher.setupEndpointRefByURI(arguments.driverUrl)} catch {case e: Throwable => if (i == nTries - 1) {throw e}}}// 向driver发送 RetrieveSparkAppConfig 消息val cfg = driver.askSync[SparkAppConfig](RetrieveSparkAppConfig(arguments.resourceProfileId))val props = cfg.sparkProperties ++ Seq[(String, String)](("spark.app.id", arguments.appId))fetcher.shutdown()//根据从driver端获取的属性创建SparkEnvval driverConf = new SparkConf()for ((key, value) <- props) {// this is required for SSL in standalone modeif (SparkConf.isExecutorStartupConf(key)) {driverConf.setIfMissing(key, value)} else {driverConf.set(key, value)}}cfg.hadoopDelegationCreds.foreach { tokens =>SparkHadoopUtil.get.addDelegationTokens(tokens, driverConf)}driverConf.set(EXECUTOR_ID, arguments.executorId)//为executor创建SparkEnvval env = SparkEnv.createExecutorEnv(driverConf, arguments.executorId, arguments.bindAddress,arguments.hostname, arguments.cores, cfg.ioEncryptionKey, isLocal = false)// 在BlockStoreClient中设置应用程序尝试ID(如果可用)val appAttemptId = env.conf.get(APP_ATTEMPT_ID)appAttemptId.foreach(attemptId =>env.blockManager.blockStoreClient.setAppAttemptId(attemptId))//创建CoarseGrainedExecutorBackendval backend = backendCreateFn(env.rpcEnv, arguments, env, cfg.resourceProfile)//并将CoarseGrainedExecutorBackend设置为 Executor Endpoint 其上的 onStart() 方法执行env.rpcEnv.setupEndpoint("Executor", backend)arguments.workerUrl.foreach { url =>env.rpcEnv.setupEndpoint("WorkerWatcher",new WorkerWatcher(env.rpcEnv, url, isChildProcessStopping = backend.stopping))}env.rpcEnv.awaitTermination()}}}

十二、CoarseGrainedExecutorBackend(executor中的Rpc端点)

private[spark] class CoarseGrainedExecutorBackend(...)extends IsolatedRpcEndpoint with ExecutorBackend with Logging {//当driver成功接受注册请求时,内部用于启动executor的消息。case object RegisteredExecutoroverride def onStart(): Unit = {//......logInfo("Connecting to driver: " + driverUrl)try {//提供了一个实用程序,用于将Spark JVM内的SparkConf(例如,执行器、驱动程序或独立的shuffle服务)转换为TransportConf,其中包含有关我们环境的详细信息,如分配给此JVM的内核数量。val shuffleClientTransportConf = SparkTransportConf.fromSparkConf(env.conf, "shuffle") //判断Netty是否可以直接使用 off-heap 内存  且 操作系统能分配的最大 off-heap < 200M 抛出异常//涉及配置  //    spark.network.sharedByteBufAllocators.enabled 默认true 是否在不同Netty通道之间共享池化ByteBuf分配器的标志。如果启用,则只创建两个池化ByteBuf分配器:一个允许缓存(用于传输服务器),另一个不允许缓存(对于传输客户端)。禁用后,将为每个传输服务器和客户端创建一个新的分配器。//    spark.io.preferDirectBufs  默认true 共享ByteBuf分配器将首选堆外字节缓冲区//    spark.network.io.preferDirectBufs 默认true 在Netty中分配堆外字节缓冲区if (NettyUtils.preferDirectBufs(shuffleClientTransportConf) &&PlatformDependent.maxDirectMemory() < env.conf.get(MAX_REMOTE_BLOCK_SIZE_FETCH_TO_MEM)) {throw new SparkException(s"Netty direct memory should at least be bigger than " +s"'${MAX_REMOTE_BLOCK_SIZE_FETCH_TO_MEM.key}', but got " +s"${PlatformDependent.maxDirectMemory()} bytes < " +s"${env.conf.get(MAX_REMOTE_BLOCK_SIZE_FETCH_TO_MEM)}")}_resources = parseOrFindResources(resourcesFileOpt)} catch {case NonFatal(e) =>exitExecutor(1, "Unable to create executor due to " + e.getMessage, e)}rpcEnv.asyncSetupEndpointRefByURI(driverUrl).flatMap { ref =>//这是一个非常快速的操作,因此我们可以使用“ThreadUtils.sameThread”driver = Some(ref)//向driver 发送 RegisterExecutor 消息 ,我们看第五步中driver的处理ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls,extractAttributes, _resources, resourceProfile.id))}(ThreadUtils.sameThread).onComplete {case Success(_) =>self.send(RegisteredExecutor)case Failure(e) =>exitExecutor(1, s"Cannot register with driver: $driverUrl", e, notifyDriver = false)}(ThreadUtils.sameThread)}override def receive: PartialFunction[Any, Unit] = {//driver收到注册 executor 并返回 true 执行该段逻辑case RegisteredExecutor =>logInfo("Successfully registered with driver")try {//创建一个 Executorexecutor = new Executor(executorId, hostname, env, userClassPath, isLocal = false,resources = _resources)//再向driver发送 LaunchedExecutor 消息,可以看 第五步 driver端的处理driver.get.send(LaunchedExecutor(executorId))} catch {case NonFatal(e) =>exitExecutor(1, "Unable to create executor due to " + e.getMessage, e)}}}

十三、Executor

//Spark执行器,由线程池支持运行任务。
//这可以与Mesos、YARN、kubernetes和独立调度器一起使用。内部RPC接口用于与driver通信,Mesos细粒度模式除外。
private[spark] class Executor(...){// 维护正在运行的任务列表private val runningTasks = new ConcurrentHashMap[Long, TaskRunner]//当Executor无法向driver程序发送心跳超过“HEARTBEAT_MAX_FAILURES”次数时,它应该自行终止。默认值为60。例如,如果最大失败次数为60次,心跳间隔为10秒,则它将尝试发送长达600秒(10分钟)的心跳。private val HEARTBEAT_MAX_FAILURES = conf.get(EXECUTOR_HEARTBEAT_MAX_FAILURES)//发送心跳的间隔(毫秒) spark.executor.heartbeatInterval 默认 10sprivate val HEARTBEAT_INTERVAL_MS = conf.get(EXECUTOR_HEARTBEAT_INTERVAL)//heartbeat 任务private val heartbeater = new Heartbeater(() => Executor.this.reportHeartBeat(),"executor-heartbeater",HEARTBEAT_INTERVAL_MS)//启动工作线程池private val threadPool = {val threadFactory = new ThreadFactoryBuilder().setDaemon(true).setNameFormat("Executor task launch worker-%d").setThreadFactory((r: Runnable) => new UninterruptibleThread(r, "unused")).build()Executors.newCachedThreadPool(threadFactory).asInstanceOf[ThreadPoolExecutor]}//启动任务def launchTask(context: ExecutorBackend, taskDescription: TaskDescription): Unit = {val tr = new TaskRunner(context, taskDescription, plugins)runningTasks.put(taskDescription.taskId, tr)threadPool.execute(tr)if (decommissioned) {log.error(s"Launching a task while in decommissioned state.")}}}

十四、总结

1、代码中根据SparkConf构建SparkContext

2、创建任务调度器并启用

3、StandaloneSchedulerBackend  和 CoarseGrainedSchedulerBackend 的 start() 启动

4、DriverEndpoint 创建 等待其他Endpoint发送消息 (比如Master 和 Executur Endpoint)

5、构建Executor的启动参数,主类为CoarseGrainedExecutorBackend

6、创建StandaloneAppClient并启动

7、Driver端创建ClientEndpoint并向Master注册

8、创建app描述信息向Master发送RegisterApplication 消息

9、Master 根据app描述信息开始调度资源,决策在哪些Worker上启动多少个Executor

10、Master端以Executor为单位依次向划分好的Worker发送LaunchExecutor消息,向Driver发送ExecutorAdded消息

11、Worker 创建一个线程启动封装好的Executor进程(主类为CoarseGrainedExecutorBackend)

12、Executor中会创建Executor Endpoint,并向Driver进行注册,如果注册成功会向自己发送RegisteredExecutor消息

13、Executor处理给自己发的RegisteredExecutor消息,其中会创建一个Executor对象并向Driver发送LaunchedExecutor消息

14、Executor对象由线程池支持运行任务,且并默认每隔10s发送依次心跳给Driver

为了方便理解和记忆,我们也画下流程图,下载放大就会清晰哟

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com