您的位置:首页 > 游戏 > 游戏 > torch.einsum详解

torch.einsum详解

2024/12/26 21:53:26 来源:https://blog.csdn.net/yiqiedouhao11/article/details/141369143  浏览:    关键词:torch.einsum详解

torch.einsum 是 PyTorch 中用于执行高效张量运算的函数,基于爱因斯坦求和约定(Einstein summation convention)。它能够处理复杂的张量操作,并简化代码书写。

基本语法

torch.einsum(subscripts, *operands)
  • subscripts:一个字符串,用于描述输入张量的维度如何结合。
  • *operands:待操作的张量。

爱因斯坦求和约定

爱因斯坦求和约定是一个简化张量运算的方式,省略了显式的求和符号。通过指定各维度的标签,可以直接描述复杂的张量运算。

语法结构

  • "nqhd,nkhd->nhqk": 这个字符串描述了如何对两个张量进行操作,并生成输出张量的维度。

    • n:批次大小(batch size)
    • q:查询序列长度(query length)
    • k:键序列长度(key length)
    • h:注意力头的数量(number of heads)
    • d:每个注意力头的维度(dimension per head)

示例代码

以下是使用 torch.einsum 计算多头注意力机制中点积相似性的示例代码:

import torch# 定义多头注意力机制的点积计算函数
def compute_attention_scores(queries, keys):# 计算点积相似性分数energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])return energy# 示例数据
N = 1            # 批次大小
q = 2            # 查询序列长度
k = 3            # 键序列长度
h = 2            # 注意力头数量
d = 4            # 每个注意力头的维度# 随机生成 queries 和 keys
queries = torch.rand((N, q, h, d))  # Shape (1, 2, 2, 4)
keys = torch.rand((N, k, h, d))    # Shape (1, 3, 2, 4)# 计算注意力分数
energy = compute_attention_scores(queries, keys)print("Energy shape:", energy.shape)
print(energy)

计算过程

  1. 维度解释

    • queries 的维度为 (1, 2, 2, 4)N = 1(批次大小),q = 2(查询序列长度),h = 2(注意力头数量),d = 4(每个头部的维度)。
    • keys 的维度为 (1, 3, 2, 4)N = 1(批次大小),k = 3(键序列长度),h = 2(注意力头数量),d = 4(每个头部的维度)。
  2. 点积计算

    • 对每个批次和每个头部,计算 querieskeysd 维度上的点积。
    • 结果的维度为 (N, h, q, k),其中:
      • N 是批次大小
      • h 是注意力头的数量
      • q 是查询序列的长度
      • k 是键序列的长度

    点积计算的实际操作是:

    • 对于每个批次(n)和每个头部(h),对 querieskeys 张量在 d 维度上进行点积运算,得到形状为 (q, k) 的张量。

简单计算示例

假设我们有如下示例数据:

queries = torch.tensor([[[[1.0, 0.5, 0.2, 1.5], [0.3, 0.7, 0.6, 0.8]], [[0.9, 0.4, 1.2, 0.5], [0.2, 0.6, 0.8, 0.7]]]])
keys = torch.tensor([[[[0.1, 1.0, 0.3, 0.5], [0.2, 0.4, 0.6, 0.7], [0.8, 1.0, 0.9, 0.5]], [[0.1, 0.5, 0.2, 0.8], [0.3, 0.4, 0.7, 0.9], [0.6, 0.8, 1.0, 0.2]]]])

点积计算

  • 对于第一个批次和第一个头部:

    • queries[0, :, 0, :]keys[0, :, 0, :] 的点积计算如下:

    计算:

    energy[0, 0, 0, 0] = (1.0*0.1 + 0.5*1.0 + 0.2*0.3 + 1.5*0.5) = 0.1 + 0.5 + 0.06 + 0.75 = 1.41
    energy[0, 0, 0, 1] = (1.0*0.2 + 0.5*0.4 + 0.2*0.6 + 1.5*0.7) = 0.2 + 0.2 + 0.12 + 1.05 = 1.59
    energy[0, 0, 0, 2] = (1.0*0.8 + 0.5*1.0 + 0.2*0.9 + 1.5*0.5) = 0.8 + 0.5 + 0.18 + 0.75 = 1.23
    energy[0, 0, 1, 0] = (0.3*0.1 + 0.7*1.0 + 0.6*0.3 + 0.8*0.5) = 0.03 + 0.7 + 0.18 + 0.4 = 1.31
    energy[0, 0, 1, 1] = (0.3*0.2 + 0.7*0.4 + 0.6*0.6 + 0.8*0.7) = 0.06 + 0.28 + 0.36 + 0.56 = 1.26
    energy[0, 0, 1, 2] = (0.3*0.8 + 0.7*1.0 + 0.6*0.9 + 0.8*0.5) = 0.24 + 0.7 + 0.54 + 0.4 = 1.88
    

总结

torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) 用于计算 querieskeys 张量在注意力机制中的点积,相似性得分。它通过爱因斯坦求和约定指定了如何在多维张量上执行这些操作,使得代码更简洁、效率更高。

Code

AI_With_NumPy
此项目汇集了很多AI相关的代码实现,供大家学习使用,欢迎点赞收藏👏🏻

备注

个人水平有限,有问题随时交流~

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com