您的位置:首页 > 游戏 > 游戏 > 广州疫情 高位平台_网页制作与设计作业在哪搜题_网络营销案例及分析_阿里巴巴官网

广州疫情 高位平台_网页制作与设计作业在哪搜题_网络营销案例及分析_阿里巴巴官网

2025/4/2 23:39:48 来源:https://blog.csdn.net/2301_77168269/article/details/146777453  浏览:    关键词:广州疫情 高位平台_网页制作与设计作业在哪搜题_网络营销案例及分析_阿里巴巴官网
广州疫情 高位平台_网页制作与设计作业在哪搜题_网络营销案例及分析_阿里巴巴官网

01背包

N, V = map(int, input().split())
w = [0] * (N+1) # 体积
c = [0] * (N+1) # 价格dp = [[0] * (V+1) for i in range(N+1)]         # dp[i][j] 前i个物品空间j下最大价值
for i in range(1, N+1):w[i], c[i] = map(int, input().split())for i in range(1, N+1):for j in range(1, V+1):if w[i] > j: dp[i][j] = dp[i-1][j]else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + c[i])
print(dp[-1][-1])

滚动数组优化

N, V = map(int, input().split())
w = [0] * (N+1) # 体积
c = [0] * (N+1) # 价格dp = [0] * (V+1)      # dp[i][j] 前i个物品空间j下最大价值
for i in range(1, N+1):w[i], c[i] = map(int, input().split())for i in range(1, N+1):for j in range(V, w[i]-1, -1):dp[j] = max(dp[j], dp[j-w[i]] + c[i])
print(dp[-1])

完全背包

dp推导

最朴素的写法:

for i in range(1, N+1):for j in range(1, V+1):if w[i] > j: dp[i][j] = dp[i-1][j]else: for k in range(1, j // w[i] + 1):dp[i][j] = max(dp[i-1][j], dp[i-1][j-k*w[i]] + k*c[i])

优化

dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + c[i], dp[i-1][j-2*w[i]] + 2*c[i], ..., dp[i-1][j-k*w[i]] + k*c[i]) # 1 + j//w[i]

考虑

dp[i][j-w[i]] = max(dp[i-1][j-w[i]], dp[i-1][j-2*w[i]] + c[i], dp[i-1][j-3*w[i]] + 2*c[i], ..., dp[i-1][j-k*w[i]] + (k-1)*c[i]) # 1 + j//w[i]

可得

dp[i][j] = max(dp[i-1][j], dp[i][j-w[i]] + c[i])
N, V = map(int, input().split())
w = [0] * (N+1) # 体积
c = [0] * (N+1) # 价格dp = [[0] * (V+1) for i in range(N+1)]         # dp[i][j] 前i个物品空间j下最大价值
for i in range(1, N+1):w[i], c[i] = map(int, input().split())for i in range(1, N+1):for j in range(1, V+1):if w[i] > j: dp[i][j] = dp[i-1][j]else: dp[i][j] = max(dp[i-1][j], dp[i][j-w[i]] + c[i])  
print(dp[-1][-1])

滚动数组优化

N, V = map(int, input().split())
w = [0] * (N+1) # 体积
c = [0] * (N+1) # 价格dp = [0] * (V+1)         # dp[i][j] 前i个物品空间j下最大价值
for i in range(1, N+1):w[i], c[i] = map(int, input().split())for i in range(1, N+1):for j in range(w[i], V+1):dp[j] = max(dp[j], dp[j-w[i]] + c[i])  
print(dp[-1])

多重背包

朴素思维:拆分当成01背包

N, V = map(int, input().split())
w = [0] # 体积
c = [0] # 价格for i in range(1, N+1):wi, ci, si = map(int, input().split())w = w + [wi for i in range(si)]c = c + [ci for i in range(si)]  n = len(w) - 1
dp = [[0] * (V+1) for i in range(n+1)]
for i in range(1, n+1):for j in range(1, V+1):if w[i] > j: dp[i][j] = dp[i-1][j]else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + c[i])
print(dp[-1][-1])

优化:二进制拆分

numswc
1w2c
22w3c
44w4c
resres*wres*c
N, V = map(int, input().split())
wv = [(0,0)] # (体积,价格)
for i in range(1, N+1):wi, ci, si = map(int, input().split())k = 1while si >= k:wv.append((k*wi, k*ci))si -= kk *= 2if si!=0:wv.append((si*wi, si*ci))n = len(wv)-1
dp = [[0] * (V+1) for i in range(n+1)]  for i in range(1, n+1):wi, ci = wv[i]for j in range(1, V+1):if wi > j: dp[i][j] = dp[i-1][j]else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + ci)
print(dp[-1][-1])

二进制拆分 + 滚动数组优化

N, V = map(int, input().split())
wv = [(0,0)] # (体积,价格)
for i in range(1, N+1):wi, ci, si = map(int, input().split())k = 1while si >= k:wv.append((k*wi, k*ci))si -= kk *= 2if si!=0:wv.append((si*wi, si*ci))n = len(wv)-1
dp = [0] * (V+1)  for i in range(1, n+1):wi, ci = wv[i]for j in range(V, wi-1 , -1):dp[j] = max(dp[j], dp[j-wi] + ci)
print(dp[-1])

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com