您的位置:首页 > 游戏 > 游戏 > 代码随想录算法训练营第70天图论9[1]

代码随想录算法训练营第70天图论9[1]

2024/12/27 3:18:05 来源:https://blog.csdn.net/2302_79934729/article/details/140190141  浏览:    关键词:代码随想录算法训练营第70天图论9[1]

代码随想录算法训练营第70天:图论9

拓扑排序精讲

卡码网:117. 软件构建(opens new window)

题目描述:

某个大型软件项目的构建系统拥有 N 个文件,文件编号从 0 到 N - 1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件 A 依赖于文件 B,则必须在处理文件 A 之前处理文件 B (0 <= A, B <= N - 1)。请编写一个算法,用于确定文件处理的顺序。

输入描述:

第一行输入两个正整数 M, N。表示 N 个文件之间拥有 M 条依赖关系。

后续 M 行,每行两个正整数 S 和 T,表示 T 文件依赖于 S 文件。

输出描述:

输出共一行,如果能处理成功,则输出文件顺序,用空格隔开。

如果不能成功处理(相互依赖),则输出 -1。

输入示例:

5 4
0 1
0 2
1 3
2 4

输出示例:

0 1 2 3 4

提示信息:

文件依赖关系如下:

所以,文件处理的顺序除了示例中的顺序,还存在

0 2 4 1 3

0 2 1 3 4

等等合法的顺序。

数据范围:

  • 0 <= N <= 10 ^ 5
  • 1 <= M <= 10 ^ 9

#拓扑排序的背景

本题是拓扑排序的经典题目。

一聊到 拓扑排序,一些录友可能会想这是排序,不会想到这是图论算法。

其实拓扑排序是经典的图论问题。

先说说 拓扑排序的应用场景。

大学排课,例如 先上A课,才能上B课,上了B课才能上C课,上了A课才能上D课,等等一系列这样的依赖顺序。 问给规划出一条 完整的上课顺序。

拓扑排序在文件处理上也有应用,我们在做项目安装文件包的时候,经常发现 复杂的文件依赖关系, A依赖B,B依赖C,B依赖D,C依赖E 等等。

如果给出一条线性的依赖顺序来下载这些文件呢?

有录友想上面的例子都很简单啊,我一眼能给排序出来。

那如果上面的依赖关系是一百对呢,一千对甚至上万个依赖关系,这些依赖关系中可能还有循环依赖,你如何发现循环依赖呢,又如果排出线性顺序呢。

所以 拓扑排序就是专门解决这类问题的。

概括来说,给出一个 有向图,把这个有向图转成线性的排序 就叫拓扑排序

当然拓扑排序也要检测这个有向图 是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。

所以拓扑排序也是图论中判断有向无环图的常用方法


#拓扑排序的思路

拓扑排序指的是一种 解决问题的大体思路, 而具体算法,可能是广搜也可能是深搜。

大家可能发现 各式各样的解法,纠结哪个是拓扑排序?

其实只要能在把 有向无环图 进行线性排序 的算法 都可以叫做 拓扑排序。

实现拓扑排序的算法有两种:卡恩算法(BFS)和DFS

卡恩1962年提出这种解决拓扑排序的思路

一般来说我们只需要掌握 BFS (广度优先搜索)就可以了,清晰易懂,如果还想多了解一些,可以再去学一下 DFS 的思路,但 DFS 不是本篇重点。

接下来我们来讲解BFS的实现思路。

以题目中示例为例如图:

做拓扑排序的话,如果肉眼去找开头的节点,一定能找到 节点0 吧,都知道要从节点0 开始。

但为什么我们能找到 节点0呢,因为我们肉眼看着 这个图就是从 节点0出发的。

作为出发节点,它有什么特征?

你看节点0 的入度 为0 出度为2, 也就是 没有边指向它,而它有两条边是指出去的。

节点的入度表示 有多少条边指向它,节点的出度表示有多少条边 从该节点出发。

所以当我们做拓扑排序的时候,应该优先找 入度为 0 的节点,只有入度为0,它才是出发节点。 理解以上内容很重要

接下来我给出 拓扑排序的过程,其实就两步:

  1. 找到入度为0 的节点,加入结果集
  2. 将该节点从图中移除

循环以上两步,直到 所有节点都在图中被移除了。

结果集的顺序,就是我们想要的拓扑排序顺序 (结果集里顺序可能不唯一)

#模拟过程

用本题的示例来模拟这一过程:

1、找到入度为0 的节点,加入结果集

2、将该节点从图中移除


1、找到入度为0 的节点,加入结果集

这里大家会发现,节点1 和 节点2 入度都为0, 选哪个呢?

选哪个都行,所以这也是为什么拓扑排序的结果是不唯一的。

2、将该节点从图中移除


1、找到入度为0 的节点,加入结果集

节点2 和 节点3 入度都为0,选哪个都行,这里选节点2

2、将该节点从图中移除


后面的过程一样的,节点3 和 节点4,入度都为0,选哪个都行。

最后结果集为: 0 1 2 3 4 。当然结果不唯一的。

#判断有环

如果有 有向环怎么办呢?例如这个图:

这个图,我们只能将入度为0 的节点0 接入结果集。

之后,节点1、2、3、4 形成了环,找不到入度为0 的节点了,所以此时结果集里只有一个元素。

那么如果我们发现结果集元素个数 不等于 图中节点个数,我们就可以认定图中一定有 有向环!

这也是拓扑排序判断有向环的方法。

通过以上过程的模拟大家会发现这个拓扑排序好像不难,还有点简单。

#写代码

理解思想后,确实不难,但代码写起来也不容易。

为了每次可以找到所有节点的入度信息,我们要在初始话的时候,就把每个节点的入度 和 每个节点的依赖关系做统计。

代码如下:

cin >> n >> m;
vector<int> inDegree(n, 0); // 记录每个文件的入度
vector<int> result; // 记录结果
unordered_map<int, vector<int>> umap; // 记录文件依赖关系while (m--) {
// s->t,先有s才能有t
cin >> s >> t;
inDegree[t]++; // t的入度加一
umap[s].push_back(t); // 记录s指向哪些文件
}

找入度为0 的节点,我们需要用一个队列放存放。

因为每次寻找入度为0的节点,不一定只有一个节点,可能很多节点入度都为0,所以要将这些入度为0的节点放到队列里,依次去处理。

代码如下:


queue<int> que;
for (int i = 0; i < n; i++) {
// 入度为0的节点,可以作为开头,先加入队列
if (inDegree[i] == 0) que.push(i);
}

开始从队列里遍历入度为0 的节点,将其放入结果集。


while (que.size()) {
int  cur = que.front(); // 当前选中的节点
que.pop();
result.push_back(cur);
// 将该节点从图中移除 }

这里面还有一个很重要的过程,如何把这个入度为0的节点从图中移除呢?

首先我们为什么要把节点从图中移除?

为的是将 该节点作为出发点所连接的边删掉。

删掉的目的是什么呢?

要把 该节点作为出发点所连接的节点的 入度 减一。

如果这里不理解,看上面的模拟过程第一步:

这事节点1 和 节点2 的入度为 1。

将节点0删除后,图为这样:

那么 节点0 作为出发点 所连接的节点的入度 就都做了 减一 的操作。

此时 节点1 和 节点 2 的入度都为0, 这样才能作为下一轮选取的节点。

所以,我们在代码实现的过程中,本质是要将 该节点作为出发点所连接的节点的 入度 减一 就可以了,这样好能根据入度找下一个节点,不用真在图里把这个节点删掉。

该过程代码如下:


while (que.size()) {
int  cur = que.front(); // 当前选中的节点
que.pop();
result.push_back(cur);
// 将该节点从图中移除 
vector<int> files = umap[cur]; //获取cur指向的节点
if (files.size()) { // 如果cur有指向的节点
for (int i = 0; i < files.size(); i++) { // 遍历cur指向的节点
inDegree[files[i]] --; // cur指向的节点入度都做减一操作
// 如果指向的节点减一之后,入度为0,说明是我们要选取的下一个节点,放入队列。
if(inDegree[files[i]] == 0) que.push(files[i]); 
}
}}

最后代码如下:

#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;
int main() {
int m, n, s, t;
cin >> n >> m;
vector<int> inDegree(n, 0); // 记录每个文件的入度unordered_map<int, vector<int>> umap;// 记录文件依赖关系
vector<int> result; // 记录结果while (m--) {
// s->t,先有s才能有t
cin >> s >> t;
inDegree[t]++; // t的入度加一
umap[s].push_back(t); // 记录s指向哪些文件
}
queue<int> que;
for (int i = 0; i < n; i++) {
// 入度为0的文件,可以作为开头,先加入队列
if (inDegree[i] == 0) que.push(i);
//cout << inDegree[i] << endl;
}
// int count = 0;
while (que.size()) {
int  cur = que.front(); // 当前选中的文件
que.pop();
//count++;
result.push_back(cur);
vector<int> files = umap[cur]; //获取该文件指向的文件
if (files.size()) { // cur有后续文件
for (int i = 0; i < files.size(); i++) {
inDegree[files[i]] --; // cur的指向的文件入度-1
if(inDegree[files[i]] == 0) que.push(files[i]);
}
}
}
if (result.size() == n) {
for (int i = 0; i < n - 1; i++) cout << result[i] << " ";
cout << result[n - 1];
} else cout << -1 << endl;}

dijkstra(朴素版)精讲

卡码网:47. 参加科学大会(opens new window)

【题目描述】

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。

小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。

小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。

【输入描述】

第一行包含两个正整数,第一个正整数 N 表示一共有 N 个公共汽车站,第二个正整数 M 表示有 M 条公路。

接下来为 M 行,每行包括三个整数,S、E 和 V,代表了从 S 车站可以单向直达 E 车站,并且需要花费 V 单位的时间。

【输出描述】

输出一个整数,代表小明从起点到终点所花费的最小时间。

输入示例

7 9
1 2 1
1 3 4
2 3 2
2 4 5
3 4 2
4 5 3
2 6 4
5 7 4
6 7 9

输出示例:12

【提示信息】

能够到达的情况:

如下图所示,起始车站为 1 号车站,终点车站为 7 号车站,绿色路线为最短的路线,路线总长度为 12,则输出 12。

不能到达的情况:

如下图所示,当从起始车站不能到达终点车站时,则输出 -1。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

数据范围:

1 <= N <= 500; 1 <= M <= 5000;

#思路

本题就是求最短路,最短路是图论中的经典问题即:给出一个有向图,一个起点,一个终点,问起点到终点的最短路径。

接下来,我们来详细讲解最短路算法中的 dijkstra 算法。

dijkstra算法:在有权图(权值非负数)中求从起点到其他节点的最短路径算法。

需要注意两点:

  • dijkstra 算法可以同时求 起点到所有节点的最短路径
  • 权值不能为负数

(这两点后面我们会讲到)

如本题示例中的图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

起点(节点1)到终点(节点7) 的最短路径是 图中 标记绿线的部分。

最短路径的权值为12。

其实 dijkstra 算法 和 我们之前讲解的prim算法思路非常接近,如果大家认真学过prim算法,那么理解 Dijkstra 算法会相对容易很多。(这也是我要先讲prim再讲dijkstra的原因)

dijkstra 算法 同样是贪心的思路,不断寻找距离 源点最近的没有访问过的节点。

这里我也给出 dijkstra三部曲

  1. 第一步,选源点到哪个节点近且该节点未被访问过
  2. 第二步,该最近节点被标记访问过
  3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)

大家此时已经会发现,这和prim算法 怎么这么像呢。

我在prim算法讲解中也给出了三部曲。 prim 和 dijkstra 确实很像,思路也是类似的,这一点我在后面还会详细来讲。

在dijkstra算法中,同样有一个数组很重要,起名为:minDist。

minDist数组 用来记录 每一个节点距离源点的最小距离

理解这一点很重要,也是理解 dijkstra 算法的核心所在。

大家现在看着可能有点懵,不知道什么意思。

没关系,先让大家有一个印象,对理解后面讲解有帮助。

我们先来画图看一下 dijkstra 的工作过程,以本题示例为例: (以下为朴素版dijkstra的思路)

示例中节点编号是从1开始,所以为了让大家看的不晕,minDist数组下标我也从 1 开始计数,下标0 就不使用了,这样 下标和节点标号就可以对应上了,避免大家搞混

#朴素版dijkstra

#模拟过程


0、初始化

minDist数组数值初始化为int最大值。

这里在强点一下 minDist数组的含义:记录所有节点到源点的最短路径,那么初始化的时候就应该初始为最大值,这样才能在后续出现最短路径的时候及时更新。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(图中,max 表示默认值,节点0 不做处理,统一从下标1 开始计算,这样下标和节点数值统一, 方便大家理解,避免搞混)

源点(节点1) 到自己的距离为0,所以 minDist[1] = 0

此时所有节点都没有被访问过,所以 visited数组都为0


以下为dijkstra 三部曲

1、选源点到哪个节点近且该节点未被访问过

源点距离源点最近,距离为0,且未被访问。

2、该最近节点被标记访问过

标记源点访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

更新 minDist数组,即:源点(节点1) 到 节点2 和 节点3的距离。

  • 源点到节点2的最短距离为1,小于原minDist[2]的数值max,更新minDist[2] = 1
  • 源点到节点3的最短距离为4,小于原minDist[3]的数值max,更新minDist[4] = 4

可能有录友问:为啥和 minDist[2] 比较?

再强调一下 minDist[2] 的含义,它表示源点到节点2的最短距离,那么目前我们得到了 源点到节点2的最短距离为1,小于默认值max,所以更新。 minDist[3]的更新同理


1、选源点到哪个节点近且该节点未被访问过

未访问过的节点中,源点到节点2距离最近,选节点2

2、该最近节点被标记访问过

节点2被标记访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

更新 minDist数组,即:源点(节点1) 到 节点6 、 节点3 和 节点4的距离。

为什么更新这些节点呢? 怎么不更新其他节点呢

因为 源点(节点1)通过 已经计算过的节点(节点2) 可以链接到的节点 有 节点3,节点4和节点6.

更新 minDist数组:

  • 源点到节点6的最短距离为5,小于原minDist[6]的数值max,更新minDist[6] = 5
  • 源点到节点3的最短距离为3,小于原minDist[3]的数值4,更新minDist[3] = 3
  • 源点到节点4的最短距离为6,小于原minDist[4]的数值max,更新minDist[4] = 6

1、选源点到哪个节点近且该节点未被访问过

未访问过的节点中,源点距离哪些节点最近,怎么算的?

其实就是看 minDist数组里的数值,minDist 记录了 源点到所有节点的最近距离,结合visited数组筛选出未访问的节点就好。

从 上面的图,或者 从minDist数组中,我们都能看出 未访问过的节点中,源点(节点1)到节点3距离最近。

2、该最近节点被标记访问过

节点3被标记访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

由于节点3的加入,那么源点可以有新的路径链接到节点4 所以更新minDist数组:

更新 minDist数组:

  • 源点到节点4的最短距离为5,小于原minDist[4]的数值6,更新minDist[4] = 5

1、选源点到哪个节点近且该节点未被访问过

距离源点最近且没有被访问过的节点,有节点4 和 节点6,距离源点距离都是 5 (minDist[4] = 5,minDist[6] = 5) ,选哪个节点都可以。

2、该最近节点被标记访问过

节点4被标记访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

由于节点4的加入,那么源点可以链接到节点5 所以更新minDist数组:

  • 源点到节点5的最短距离为8,小于原minDist[5]的数值max,更新minDist[5] = 8

1、选源点到哪个节点近且该节点未被访问过

距离源点最近且没有被访问过的节点,是节点6,距离源点距离是 5 (minDist[6] = 5)

2、该最近节点被标记访问过

节点6 被标记访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

由于节点6的加入,那么源点可以链接到节点7 所以 更新minDist数组:

  • 源点到节点7的最短距离为14,小于原minDist[7]的数值max,更新minDist[7] = 14

1、选源点到哪个节点近且该节点未被访问过

距离源点最近且没有被访问过的节点,是节点5,距离源点距离是 8 (minDist[5] = 8)

2、该最近节点被标记访问过

节点5 被标记访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

由于节点5的加入,那么源点有新的路径可以链接到节点7 所以 更新minDist数组:

  • 源点到节点7的最短距离为12,小于原minDist[7]的数值14,更新minDist[7] = 12

1、选源点到哪个节点近且该节点未被访问过

距离源点最近且没有被访问过的节点,是节点7(终点),距离源点距离是 12 (minDist[7] = 12)

2、该最近节点被标记访问过

节点7 被标记访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

节点7加入,但节点7到节点7的距离为0,所以 不用更新minDist数组


最后我们要求起点(节点1) 到终点 (节点7)的距离。

再来回顾一下minDist数组的含义:记录 每一个节点距离源点的最小距离。

那么起到(节点1)到终点(节点7)的最短距离就是 minDist[7] ,按上面举例讲解来说,minDist[7] = 12,节点1 到节点7的最短路径为 12。

路径如图:

在上面的讲解中,每一步 我都是按照 dijkstra 三部曲来讲解的,理解了这三部曲,代码也就好懂的。

#代码实现

本题代码如下,里面的 三部曲 我都做了注释,大家按照我上面的讲解 来看如下代码:

#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid[p1][p2] = val;
}int start = 1;
int end = n;// 存储从源点到每个节点的最短距离
std::vector<int> minDist(n + 1, INT_MAX);// 记录顶点是否被访问过
std::vector<bool> visited(n + 1, false);minDist[start] = 0;  // 起始点到自身的距离为0for (int i = 1; i <= n; i++) { // 遍历所有节点int minVal = INT_MAX;
int cur = 1;// 1、选距离源点最近且未访问过的节点
for (int v = 1; v <= n; ++v) {
if (!visited[v] && minDist[v] < minVal) {
minVal = minDist[v];
cur = v;
}
}visited[cur] = true;  // 2、标记该节点已被访问// 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
}
}}if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径}
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

#debug方法

写这种题目难免会有各种各样的问题,我们如何发现自己的代码是否有问题呢?

最好的方式就是打日志,本题的话,就是将 minDist 数组打印出来,就可以很明显发现 哪里出问题了。

每次选择节点后,minDist数组的变化是否符合预期 ,是否和我上面讲的逻辑是对应的。

例如本题,如果想debug的话,打印日志可以这样写:

#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid[p1][p2] = val;
}int start = 1;
int end = n;std::vector<int> minDist(n + 1, INT_MAX);std::vector<bool> visited(n + 1, false);minDist[start] = 0;
for (int i = 1; i <= n; i++) {int minVal = INT_MAX;
int cur = 1;for (int v = 1; v <= n; ++v) {
if (!visited[v] && minDist[v] < minVal) {
minVal = minDist[v];
cur = v;
}
}visited[cur] = true;for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
}
}// 打印日志:
cout << "select:" << cur << endl;
for (int v = 1; v <= n; v++) cout <<  v << ":" << minDist[v] << " ";
cout << endl << endl;;}
if (minDist[end] == INT_MAX) cout << -1 << endl;
else cout << minDist[end] << endl;}

打印后的结果:

select:1
1:0 2:1 3:4 4:2147483647 5:2147483647 6:2147483647 7:2147483647select:2
1:0 2:1 3:3 4:6 5:2147483647 6:5 7:2147483647select:3
1:0 2:1 3:3 4:5 5:2147483647 6:5 7:2147483647select:4
1:0 2:1 3:3 4:5 5:8 6:5 7:2147483647select:6
1:0 2:1 3:3 4:5 5:8 6:5 7:14select:5
1:0 2:1 3:3 4:5 5:8 6:5 7:12select:7
1:0 2:1 3:3 4:5 5:8 6:5 7:12

打印日志可以和上面我讲解的过程进行对比,每一步的结果是完全对应的。

所以如果大家如果代码有问题,打日志来debug是最好的方法

#如何求路径

如果题目要求把最短路的路径打印出来,应该怎么办呢?

这里还是有一些“坑”的,本题打印路径和 prim 打印路径是一样的,我在 prim算法精讲 【拓展】中 已经详细讲解了。

在这里就不再赘述。

打印路径只需要添加 几行代码, 打印路径的代码我都加上的日志,如下:

#include <iostream>
#include <vector>
#include <climits>
using namespace std;
int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));
for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
grid[p1][p2] = val;
}int start = 1;
int end = n;std::vector<int> minDist(n + 1, INT_MAX);std::vector<bool> visited(n + 1, false);minDist[start] = 0; //加上初始化
vector<int> parent(n + 1, -1);for (int i = 1; i <= n; i++) {int minVal = INT_MAX;
int cur = 1;for (int v = 1; v <= n; ++v) {
if (!visited[v] && minDist[v] < minVal) {
minVal = minDist[v];
cur = v;
}
}visited[cur] = true;for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
parent[v] = cur; // 记录边
}
}}// 输出最短情况
for (int i = 1; i <= n; i++) {
cout << parent[i] << "->" << i << endl;
}
}

打印结果:

-1->1
1->2
2->3
3->4
4->5
2->6
5->7

对应如图:

#出现负数

如果图中边的权值为负数,dijkstra 还合适吗?

看一下这个图: (有负权值)

节点1 到 节点5 的最短路径 应该是 节点1 -> 节点2 -> 节点3 -> 节点4 -> 节点5

那我们来看dijkstra 求解的路径是什么样的,继续dijkstra 三部曲来模拟 :(dijkstra模拟过程上面已经详细讲过,以下只模拟重要过程,例如如何初始化就省略讲解了)


初始化:


1、选源点到哪个节点近且该节点未被访问过

源点距离源点最近,距离为0,且未被访问。

2、该最近节点被标记访问过

标记源点访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

更新 minDist数组,即:源点(节点1) 到 节点2 和 节点3的距离。

  • 源点到节点2的最短距离为100,小于原minDist[2]的数值max,更新minDist[2] = 100
  • 源点到节点3的最短距离为1,小于原minDist[3]的数值max,更新minDist[4] = 1

1、选源点到哪个节点近且该节点未被访问过

源点距离节点3最近,距离为1,且未被访问。

2、该最近节点被标记访问过

标记节点3访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

由于节点3的加入,那么源点可以有新的路径链接到节点4 所以更新minDist数组:

  • 源点到节点4的最短距离为2,小于原minDist[4]的数值max,更新minDist[4] = 2

1、选源点到哪个节点近且该节点未被访问过

源点距离节点4最近,距离为2,且未被访问。

2、该最近节点被标记访问过

标记节点4访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

由于节点4的加入,那么源点可以有新的路径链接到节点5 所以更新minDist数组:

  • 源点到节点5的最短距离为3,小于原minDist[5]的数值max,更新minDist[5] = 5

1、选源点到哪个节点近且该节点未被访问过

源点距离节点5最近,距离为3,且未被访问。

2、该最近节点被标记访问过

标记节点5访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:

节点5的加入,而节点5 没有链接其他节点, 所以不用更新minDist数组,仅标记节点5被访问过了


1、选源点到哪个节点近且该节点未被访问过

源点距离节点2最近,距离为100,且未被访问。

2、该最近节点被标记访问过

标记节点2访问过

3、更新非访问节点到源点的距离(即更新minDist数组) ,如图:


至此dijkstra的模拟过程就结束了,根据最后的minDist数组,我们求 节点1 到 节点5 的最短路径的权值总和为 3,路径: 节点1 -> 节点3 -> 节点4 -> 节点5

通过以上的过程模拟,我们可以发现 之所以 没有走有负权值的最短路径 是因为 在 访问 节点 2 的时候,节点 3 已经访问过了,就不会再更新了。

那有录友可能会想: 我可以改代码逻辑啊,访问过的节点,也让它继续访问不就好了?

那么访问过的节点还能继续访问会不会有死循环的出现呢?控制逻辑不让其死循环?那特殊情况自己能都想清楚吗?(可以试试,实践出真知)

对于负权值的出现,大家可以针对某一个场景 不断去修改 dijkstra 的代码,但最终会发现只是 拆了东墙补西墙,对dijkstra的补充逻辑只能满足某特定场景最短路求解。

对于求解带有负权值的最短路问题,可以使用 Bellman-Ford 算法 ,我在后序会详细讲解。

#dijkstra与prim算法的区别

这里再次提示,需要先看我的 prim算法精讲 ,否则可能不知道我下面讲的是什么。

大家可以发现 dijkstra的代码看上去 怎么和 prim算法这么像呢。

其实代码大体不差,唯一区别在 三部曲中的 第三步: 更新minDist数组

因为prim是求 非访问节点到最小生成树的最小距离,而 dijkstra是求 非访问节点到源点的最小距离

prim 更新 minDist数组的写法:

for (int j = 1; j <= v; j++) {
if (!isInTree[j] && grid[cur][j] < minDist[j]) {
minDist[j] = grid[cur][j];
}
}

因为 minDist表示 节点到最小生成树的最小距离,所以 新节点cur的加入,只需要 使用 grid[cur][j] ,grid[cur][j] 就表示 cur 加入生成树后,生成树到 节点j 的距离。

dijkstra 更新 minDist数组的写法:

for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
}
}

因为 minDist表示 节点到源点的最小距离,所以 新节点 cur 的加入,需要使用 源点到cur的距离 (minDist[cur]) + cur 到 节点 v 的距离 (grid[cur][v]),才是 源点到节点v的距离。

此时大家可能不禁要想 prim算法 可以有负权值吗?

当然可以!

录友们可以自己思考思考一下,这是为什么?

这里我提示一下:prim算法只需要将节点以最小权值和链接在一起,不涉及到单一路径。

#总结

本篇,我们深入讲解的dijkstra算法,详细模拟其工作的流程。

这里我给出了 dijkstra 三部曲 来 帮助大家理解 该算法,不至于 每次写 dijkstra 都是黑盒操作,没有框架没有章法。

在给出的代码中,我也按照三部曲的逻辑来给大家注释,只要理解这三部曲,即使 过段时间 对 dijkstra 算法有些遗忘,依然可以写出一个框架出来,然后再去调试细节。

对于图论算法,一般代码都比较长,很难写出代码直接可以提交通过,都需要一个debug的过程,所以 学习如何debug 非常重要

这也是我为什么 在本文中 单独用来讲解 debug方法。

本题求的是最短路径和是多少,同时我们也要掌握 如何把最短路径打印出来

我还写了大篇幅来讲解 负权值的情况, 只有画图带大家一步一步去 看 出现负权值 dijkstra的求解过程,才能帮助大家理解,问题出在哪里。

如果我直接讲:是因为访问过的节点 不能再访问,导致错过真正的最短路,我相信大家都不知道我在说啥。

最后我还讲解了 dijkstra 和 prim 算法的 相同 与 不同之处, 我在图论的讲解安排中 先讲 prim算法 再讲 dijkstra 是有目的的, 理解这两个算法的相同与不同之处 有助于大家学习的更深入

而不是 学了 dijkstra 就只看 dijkstra, 算法之间 都是有联系的,多去思考 算法之间的相互联系,会帮助大家思考的更深入,掌握的更彻底。

本篇写了这么长,我也只讲解了 朴素版dijkstra,关于 堆优化dijkstra,我会在下一篇再来给大家详细讲解

加油

dijkstra(堆优化版)精讲

卡码网:47. 参加科学大会(opens new window)

【题目描述】

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。

小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。

小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。

【输入描述】

第一行包含两个正整数,第一个正整数 N 表示一共有 N 个公共汽车站,第二个正整数 M 表示有 M 条公路。

接下来为 M 行,每行包括三个整数,S、E 和 V,代表了从 S 车站可以单向直达 E 车站,并且需要花费 V 单位的时间。

【输出描述】

输出一个整数,代表小明从起点到终点所花费的最小时间。

输入示例

7 9
1 2 1
1 3 4
2 3 2
2 4 5
3 4 2
4 5 3
2 6 4
5 7 4
6 7 9

输出示例:12

【提示信息】

能够到达的情况:

如下图所示,起始车站为 1 号车站,终点车站为 7 号车站,绿色路线为最短的路线,路线总长度为 12,则输出 12。

不能到达的情况:

如下图所示,当从起始车站不能到达终点车站时,则输出 -1。

数据范围:

1 <= N <= 500; 1 <= M <= 5000;

#思路

本篇我们来讲解 堆优化版dijkstra,看本篇之前,一定要先看 我讲解的 朴素版dijkstra,否则本篇会有部分内容看不懂。

在上一篇中,我们讲解了朴素版的dijkstra,该解法的时间复杂度为 O(n^2),可以看出时间复杂度 只和 n (节点数量)有关系。

如果n很大的话,我们可以换一个角度来优先性能。

在 讲解 最小生成树的时候,我们 讲了两个算法,prim算法(从点的角度来求最小生成树)、Kruskal算法(从边的角度来求最小生成树)

这么在n 很大的时候,也有另一个思考维度,即:从边的数量出发。

当 n 很大,边 的数量 也很多的时候(稠密图),那么 上述解法没问题。

但 n 很大,边 的数量 很小的时候(稀疏图),是不是可以换成从边的角度来求最短路呢?

毕竟边的数量少。

有的录友可能会想,n (节点数量)很大,边不就多吗? 怎么会边的数量少呢?

别忘了,谁也没有规定 节点之间一定要有边连接着,例如有一万个节点,只有一条边,这也是一张图。

了解背景之后,再来看 解法思路。

#图的存储

首先是 图的存储。

关于图的存储 主流有两种方式: 邻接矩阵和邻接表

#邻接矩阵

邻接矩阵 使用 二维数组来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。

例如: grid[2][5] = 6,表示 节点 2 链接 节点5 为有向图,节点2 指向 节点5,边的权值为6 (套在题意里,可能是距离为6 或者 消耗为6 等等)

如果想表示无向图,即:grid[2][5] = 6,grid[5][2] = 6,表示节点2 与 节点5 相互连通,权值为6。

如图:

在一个 n (节点数)为8 的图中,就需要申请 8 * 8 这么大的空间,有一条双向边,即:grid[2][5] = 6,grid[5][2] = 6

这种表达方式(邻接矩阵) 在 边少,节点多的情况下,会导致申请过大的二维数组,造成空间浪费。

而且在寻找节点链接情况的时候,需要遍历整个矩阵,即 n * n 的时间复杂度,同样造成时间浪费。

邻接矩阵的优点:

  • 表达方式简单,易于理解
  • 检查任意两个顶点间是否存在边的操作非常快
  • 适合稠密图,在边数接近顶点数平方的图中,邻接矩阵是一种空间效率较高的表示方法。

缺点:

  • 遇到稀疏图,会导致申请过大的二维数组造成空间浪费 且遍历 边 的时候需要遍历整个n * n矩阵,造成时间浪费
#邻接表

邻接表 使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。

邻接表的构造如图:

这里表达的图是:

  • 节点1 指向 节点3 和 节点5
  • 节点2 指向 节点4、节点3、节点5
  • 节点3 指向 节点4,节点4指向节点1。

有多少边 邻接表才会申请多少个对应的链表节点。

从图中可以直观看出 使用 数组 + 链表 来表达 边的链接情况 。

邻接表的优点:

  • 对于稀疏图的存储,只需要存储边,空间利用率高
  • 遍历节点链接情况相对容易

缺点:

  • 检查任意两个节点间是否存在边,效率相对低,需要 O(V)时间,V表示某节点链接其他节点的数量。
  • 实现相对复杂,不易理解
#本题图的存储

接下来我们继续按照稀疏图的角度来分析本题。

在第一个版本的实现思路中,我们提到了三部曲:

  1. 第一步,选源点到哪个节点近且该节点未被访问过
  2. 第二步,该最近节点被标记访问过
  3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)

在第一个版本的代码中,这三部曲是套在一个 for 循环里,为什么?

因为我们是从节点的角度来解决问题。

三部曲中第一步(选源点到哪个节点近且该节点未被访问过),这个操作本身需要for循环遍历 minDist 来寻找最近的节点。

同时我们需要 遍历所有 未访问过的节点,所以 我们从 节点角度出发,代码会有两层for循环,代码是这样的: (注意代码中的注释,标记两层for循环的用处)


for (int i = 1; i <= n; i++) { // 遍历所有节点,第一层for循环 int minVal = INT_MAX;
int cur = 1;// 1、选距离源点最近且未访问过的节点 , 第二层for循环
for (int v = 1; v <= n; ++v) {
if (!visited[v] && minDist[v] < minVal) {
minVal = minDist[v];
cur = v;
}
}visited[cur] = true;  // 2、标记该节点已被访问// 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
}
}}

那么当从 边 的角度出发, 在处理 三部曲里的第一步(选源点到哪个节点近且该节点未被访问过)的时候 ,我们可以不用去遍历所有节点了。

而且 直接把 边(带权值)加入到 小顶堆(利用堆来自动排序),那么每次我们从 堆顶里 取出 边 自然就是 距离源点最近的节点所在的边。

这样我们就不需要两层for循环来寻找最近的节点了。

了解了大体思路,我们再来看代码实现。

首先是 如何使用 邻接表来表述图结构,这是摆在很多录友面前的第一个难题。

邻接表用 数组+链表 来表示,代码如下:(C++中 vector 为数组,list 为链表, 定义了 n+1 这么大的数组空间)

vector<list<int>> grid(n + 1);

不少录友,不知道 如何定义的数据结构,怎么表示邻接表的,我来给大家画一个图:

图中邻接表表示:

  • 节点1 指向 节点3 和 节点5
  • 节点2 指向 节点4、节点3、节点5
  • 节点3 指向 节点4
  • 节点4 指向 节点1

大家发现图中的边没有权值,而本题中 我们的边是有权值的,权值怎么表示?在哪里表示?

所以 在vector<list<int>> grid(n + 1);​ 中 就不能使用int了,而是需要一个键值对 来存两个数字,一个数表示节点,一个数表示 指向该节点的这条边的权值。

那么 代码可以改成这样: (pair 为键值对,可以存放两个int)

vector<list<pair<int,int>>> grid(n + 1);

举例来给大家展示 该代码表达的数据 如下:

  • 节点1 指向 节点3 权值为 1
  • 节点1 指向 节点5 权值为 2
  • 节点2 指向 节点4 权值为 7
  • 节点2 指向 节点3 权值为 6
  • 节点2 指向 节点5 权值为 3
  • 节点3 指向 节点4 权值为 3
  • 节点5 指向 节点1 权值为 10

这样 我们就把图中权值表示出来了。

但是在代码中 使用 pair<int, int>​ 很容易让我们搞混了,第一个int 表示什么,第二个int表示什么,导致代码可读性很差,或者说别人看你的代码看不懂。

那么 可以 定一个类 来取代 pair<int, int>

类(或者说是结构体)定义如下:

struct Edge {
int to;  // 邻接顶点
int val; // 边的权重Edge(int t, int w): to(t), val(w) {}  // 构造函数
};

这个类里有两个成员变量,有对应的命名,这样不容易搞混 两个int的含义。

所以 本题中邻接表的定义如下:

struct Edge {
int to;  // 链接的节点
int val; // 边的权重Edge(int t, int w): to(t), val(w) {}  // 构造函数
};vector<list<Edge>> grid(n + 1); // 邻接表

(我们在下面的讲解中会直接使用这个邻接表的代码表示方式)

#堆优化细节

其实思路依然是 dijkstra 三部曲:

  1. 第一步,选源点到哪个节点近且该节点未被访问过
  2. 第二步,该最近节点被标记访问过
  3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)

只不过之前是 通过遍历节点来遍历边,通过两层for循环来寻找距离源点最近节点。 这次我们直接遍历边,且通过堆来对边进行排序,达到直接选择距离源点最近节点。

先来看一下针对这三部曲,如果用 堆来优化。

那么三部曲中的第一步(选源点到哪个节点近且该节点未被访问过),我们如何选?

我们要选择距离源点近的节点(即:该边的权值最小),所以 我们需要一个 小顶堆 来帮我们对边的权值排序,每次从小顶堆堆顶 取边就是权值最小的边。

C++定义小顶堆,可以用优先级队列实现,代码如下:

// 小顶堆
class mycomparison {
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};
// 优先队列中存放 pair<节点编号,源点到该节点的权值> 
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;

pair<int, int>​中 第二个int 为什么要存 源点到该节点的权值,因为 这个小顶堆需要按照权值来排序)

有了小顶堆自动对边的权值排序,那我们只需要直接从 堆里取堆顶元素(小顶堆中,最小的权值在上面),就可以取到离源点最近的节点了 (未访问过的节点,不会加到堆里进行排序)

所以三部曲中的第一步,我们不用 for循环去遍历,直接取堆顶元素:

// pair<节点编号,源点到该节点的权值>
pair<int, int> cur = pq.top(); pq.pop();

第二步(该最近节点被标记访问过) 这个就是将 节点做访问标记,和 朴素dijkstra 一样 ,代码如下:

// 2. 第二步,该最近节点被标记访问过
visited[cur.first] = true;

cur.first​ 是指取 pair<int, int>​ 里的第一个int,即节点编号 )

第三步(更新非访问节点到源点的距离),这里的思路 也是 和朴素dijkstra一样的。

但很多录友对这里是最懵的,主要是因为两点:

  • 没有理解透彻 dijkstra 的思路
  • 没有理解 邻接表的表达方式

我们来回顾一下 朴素dijkstra 在这一步的代码和思路(如果没看过我讲解的朴素版dijkstra,这里会看不懂)


// 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (int v = 1; v <= n; v++) {
if (!visited[v] && grid[cur][v] != INT_MAX && minDist[cur] + grid[cur][v] < minDist[v]) {
minDist[v] = minDist[cur] + grid[cur][v];
}
}

其中 for循环是用来做什么的? 是为了 找到 节点cur 链接指向了哪些节点,因为使用邻接矩阵的表达方式 所以把所有节点遍历一遍。

而在邻接表中,我们可以以相对高效的方式知道一个节点链接指向哪些节点。

再回顾一下邻接表的构造(数组 + 链表):

假如 加入的cur 是节点 2, 那么 grid[2] 表示的就是图中第二行链表。 (grid数组的构造我们在 上面 「图的存储」中讲过)

所以在邻接表中,我们要获取 节点cur 链接指向哪些节点,就是遍历 grid[cur节点编号] 这个链表。

这个遍历方式,C++代码如下:

for (Edge edge : grid[cur.first]) 

(如果不知道 Edge 是什么,看上面「图的存储」中邻接表的讲解)

cur.first​ 就是cur节点编号, 参考上面pair的定义: pair<节点编号,源点到该节点的权值>

接下来就是更新 非访问节点到源点的距离,代码实现和 朴素dijkstra 是一样的,代码如下:

// 3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (Edge edge : grid[cur.first]) { // 遍历 cur指向的节点,cur指向的节点为 edge
// cur指向的节点edge.to,这条边的权值为 edge.val
if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
minDist[edge.to] = minDist[cur.first] + edge.val;
pq.push(pair<int, int>(edge.to, minDist[edge.to]));
}
}

但为什么思路一样,有的录友能写出朴素dijkstra,但堆优化这里的逻辑就是写不出来呢?

主要就是因为对邻接表的表达方式不熟悉

以上代码中,cur 链接指向的节点编号 为 edge.to, 这条边的权值为 edge.val ,如果对这里模糊的就再回顾一下 Edge的定义:

struct Edge {
int to;  // 邻接顶点
int val; // 边的权重Edge(int t, int w): to(t), val(w) {}  // 构造函数
};

确定该节点没有被访问过,!visited[edge.to]​ , 目前 源点到cur.first的最短距离(minDist) + cur.first 到 edge.to 的距离 (edge.val) 是否 小于 minDist已经记录的 源点到 edge.to 的距离 (minDist[edge.to])

如果是的话,就开始更新操作。

即:

if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
minDist[edge.to] = minDist[cur.first] + edge.val;
pq.push(pair<int, int>(edge.to, minDist[edge.to])); // 由于cur节点的加入,而新链接的边,加入到优先级队里中
}

同时,由于cur节点的加入,源点又有可以新链接到的边,将这些边加入到优先级队里中。

以上代码思路 和 朴素版dijkstra 是一样一样的,主要区别是两点:

  • 邻接表的表示方式不同
  • 使用优先级队列(小顶堆)来对新链接的边排序

#代码实现

堆优化dijkstra完整代码如下:

#include <iostream>
#include <vector>
#include <list>
#include <queue>
#include <climits>
using namespace std; 
// 小顶堆
class mycomparison {
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};
// 定义一个结构体来表示带权重的边
struct Edge {
int to;  // 邻接顶点
int val; // 边的权重Edge(int t, int w): to(t), val(w) {}  // 构造函数
};int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<list<Edge>> grid(n + 1);for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val; 
// p1 指向 p2,权值为 val
grid[p1].push_back(Edge(p2, val));}int start = 1;  // 起点
int end = n;    // 终点// 存储从源点到每个节点的最短距离
std::vector<int> minDist(n + 1, INT_MAX);// 记录顶点是否被访问过
std::vector<bool> visited(n + 1, false); // 优先队列中存放 pair<节点,源点到该节点的权值>
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;// 初始化队列,源点到源点的距离为0,所以初始为0
pq.push(pair<int, int>(start, 0)); minDist[start] = 0;  // 起始点到自身的距离为0while (!pq.empty()) {
// 1. 第一步,选源点到哪个节点近且该节点未被访问过 (通过优先级队列来实现)
// <节点, 源点到该节点的距离>
pair<int, int> cur = pq.top(); pq.pop();if (visited[cur.first]) continue;// 2. 第二步,该最近节点被标记访问过
visited[cur.first] = true;// 3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (Edge edge : grid[cur.first]) { // 遍历 cur指向的节点,cur指向的节点为 edge
// cur指向的节点edge.to,这条边的权值为 edge.val
if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
minDist[edge.to] = minDist[cur.first] + edge.val;
pq.push(pair<int, int>(edge.to, minDist[edge.to]));
}
}}if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径
}
  • 时间复杂度:O(ElogE) E 为边的数量
  • 空间复杂度:O(N + E) N 为节点的数量

堆优化的时间复杂度 只和边的数量有关 和节点数无关,在 优先级队列中 放的也是边。

以上代码中,while (!pq.empty())​ 里套了 for (Edge edge : grid[cur.first])

for​ 里 遍历的是 当前节点 cur 所连接边。

那 当前节点cur 所连接的边 也是不固定的, 这就让大家分不清,这时间复杂度究竟是多少?

其实 for (Edge edge : grid[cur.first])​ 里最终的数据走向 是 给队列里添加边。

那么跳出局部代码,整个队列 一定是 所有边添加了一次,同时也弹出了一次。

所以边添加一次时间复杂度是 O(E), while (!pq.empty())​ 里每次都要弹出一个边来进行操作,在优先级队列(小顶堆)中 弹出一个元素的时间复杂度是 O(logE) ,这是堆排序的时间复杂度。

(当然小顶堆里 是 添加元素的时候 排序,还是 取数元素的时候排序,这个无所谓,时间复杂度都是O(E),总之是一定要排序的,而小顶堆里也不会滞留元素,有多少元素添加 一定就有多少元素弹出)

所以 该算法整体时间复杂度为 O(ElogE)

网上的不少分析 会把 n (节点的数量)算进来,这个分析是有问题的,举一个极端例子,在n 为 10000,且是有一条边的 图里,以上代码,大家感觉执行了多少次?

while (!pq.empty())​ 中的 pq 存的是边,其实只执行了一次。

所以该算法时间复杂度 和 节点没有关系。

至于空间复杂度,邻接表是 数组 + 链表 数组的空间 是 N ,有E条边 就申请对应多少个链表节点,所以是 复杂度是 N + E

#拓展

当然也有录友可能想 堆优化dijkstra 中 我为什么一定要用邻接表呢,我就用邻接矩阵 行不行 ?

也行的。

但 正是因为稀疏图,所以我们使用堆优化的思路, 如果我们还用 邻接矩阵 去表达这个图的话,就是 一个高效的算法 使用了低效的数据结构,那么 整体算法效率 依然是低的

如果还不清楚为什么要使用 邻接表,可以再看看上面 我在 「图的存储」标题下的讲解。

这里我也给出 邻接矩阵版本的堆优化dijkstra代码:

#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;
// 小顶堆
class mycomparison {
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};int main() {
int n, m, p1, p2, val;
cin >> n >> m;vector<vector<int>> grid(n + 1, vector<int>(n + 1, INT_MAX));for(int i = 0; i < m; i++){
cin >> p1 >> p2 >> val;
// p1 指向 p2,权值为 val
grid[p1][p2] = val;
}int start = 1;  // 起点
int end = n;    // 终点// 存储从源点到每个节点的最短距离
std::vector<int> minDist(n + 1, INT_MAX);// 记录顶点是否被访问过
std::vector<bool> visited(n + 1, false);// 优先队列中存放 pair<节点,源点到该节点的距离>
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;// 初始化队列,源点到源点的距离为0,所以初始为0
pq.push(pair<int, int>(start, 0));minDist[start] = 0;  // 起始点到自身的距离为0while (!pq.empty()) {
// <节点, 源点到该节点的距离>
// 1、选距离源点最近且未访问过的节点
pair<int, int> cur = pq.top(); pq.pop();if (visited[cur.first]) continue;visited[cur.first] = true; // 2、标记该节点已被访问// 3、第三步,更新非访问节点到源点的距离(即更新minDist数组)
for (int j = 1; j <= n; j++) {
if (!visited[j] && grid[cur.first][j] != INT_MAX && (minDist[cur.first] + grid[cur.first][j] < minDist[j])) {
minDist[j] = minDist[cur.first] + grid[cur.first][j];
pq.push(pair<int, int>(j, minDist[j]));
}
}
}if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
else cout << minDist[end] << endl; // 到达终点最短路径}
  • 时间复杂度:O(E * (N + logE)) E为边的数量,N为节点数量
  • 空间复杂度:O(log(N^2))

while (!pq.empty())​ 时间复杂度为 E ,while 里面 每次取元素 时间复杂度 为 logE,和 一个for循环 时间复杂度 为 N 。

所以整体是 E * (N + logE)

#总结

在学习一种优化思路的时候,首先就要知道为什么要优化,遇到了什么问题。

正如我在开篇就给大家交代清楚 堆优化方式的背景。

堆优化的整体思路和 朴素版是大体一样的,区别是 堆优化从边的角度出发且利用堆来排序。

很多录友别说写堆优化 就是看 堆优化的代码也看的很懵。

主要是因为两点:

  • 不熟悉邻接表的表达方式
  • 对dijkstra的实现思路还是不熟

这是我为什么 本篇花了大力气来讲解 图的存储,就是为了让大家彻底理解邻接表以及邻接表的代码写法。

至于 dijkstra的实现思路 ,朴素版 和 堆优化版本 都是 按照 dijkstra 三部曲来的。

理解了三部曲,dijkstra 的思路就是清晰的。

针对邻接表版本代码 我做了详细的 时间复杂度分析,也让录友们清楚,相对于 朴素版,时间都优化到哪了。

最后 我也给出了 邻接矩阵的版本代码,分析了这一版本的必要性以及时间复杂度。

至此通过 两篇dijkstra的文章,终于把 dijkstra 讲完了,如果大家对我讲解里所涉及的内容都吃透的话,详细对 dijkstra 算法也就理解到位了。