您的位置:首页 > 游戏 > 游戏 > 施工企业名词解释_企业大全官网_seo服务深圳_百度竞价点击神器下载安装

施工企业名词解释_企业大全官网_seo服务深圳_百度竞价点击神器下载安装

2024/12/29 6:51:59 来源:https://blog.csdn.net/qq_44638724/article/details/144778990  浏览:    关键词:施工企业名词解释_企业大全官网_seo服务深圳_百度竞价点击神器下载安装
施工企业名词解释_企业大全官网_seo服务深圳_百度竞价点击神器下载安装

1. 基本定义和理论基础

1.1 再生核希尔伯特空间(RKHS)

给定一个非空集合 X \mathcal{X} X,一个希尔伯特空间 H \mathcal{H} H 称为再生核希尔伯特空间,如果存在一个函数 K : X × X → R K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} K:X×XR,满足:

  1. 再生性质:对于任意 x ∈ X x \in \mathcal{X} xX K ( x , ⋅ ) ∈ H K(x,\cdot) \in \mathcal{H} K(x,)H

  2. 对于任意 f ∈ H f \in \mathcal{H} fH 和任意 x ∈ X x \in \mathcal{X} xX,有:
    f ( x ) = ⟨ f , K ( x , ⋅ ) ⟩ H f(x) = \langle f, K(x,\cdot) \rangle_{\mathcal{H}} f(x)=f,K(x,)H

这里的 K K K 称为再生核函数。

1.2 分位数回归损失函数

对于给定的分位数水平 τ ∈ ( 0 , 1 ) \tau \in (0,1) τ(0,1),分位数回归的检验函数定义为:
ρ τ ( u ) = u ( τ − I ( u < 0 ) ) \rho_\tau(u) = u(\tau - I(u < 0)) ρτ(u)=u(τI(u<0))
其中 I ( ⋅ ) I(\cdot) I() 是示性函数。这个损失函数具有以下性质:
∂ ρ τ ( u ) ∂ u = { τ , u > 0 τ − 1 , u < 0 \frac{\partial \rho_\tau(u)}{\partial u} = \begin{cases} \tau, & u > 0 \\ \tau - 1, & u < 0 \end{cases} uρτ(u)={τ,τ1,u>0u<0

2. 优化问题的形式化

2.1 原始问题

给定数据集 { ( x i , y i ) } i = 1 n \{(x_i, y_i)\}_{i=1}^n {(xi,yi)}i=1n,其中 ( x i , y i ) ∈ X × R (x_i, y_i) \in \mathcal{X} \times \mathbb{R} (xi,yi)X×R,我们的目标是在RKHS H K \mathcal{H}_K HK 中估计条件 τ \tau τ 分位数函数。优化问题可以表示为:

min ⁡ f ∈ H K 1 n ∑ i = 1 n ρ τ ( y i − f ( x i ) ) + λ ∥ f ∥ H K 2 \min_{f \in \mathcal{H}_K} \frac{1}{n}\sum_{i=1}^n \rho_\tau(y_i - f(x_i)) + \lambda \|f\|^2_{\mathcal{H}_K} fHKminn1i=1nρτ(yif(xi))+λfHK2

这里:

  • 第一项是经验风险,度量预测值与观测值之间的分位数损失
  • 第二项是正则化项,控制函数的复杂度
  • λ > 0 \lambda > 0 λ>0 是正则化参数,平衡这两项的权重

2.2 表示定理

根据RKHS的表示定理,最优解必然具有以下形式:
f ( x ) = ∑ i = 1 n α i K ( x , x i ) f(x) = \sum_{i=1}^n \alpha_i K(x, x_i) f(x)=i=1nαiK(x,xi)

其中 α = ( α 1 , … , α n ) T \alpha = (\alpha_1,\ldots,\alpha_n)^T α=(α1,,αn)T 是待估计的系数向量。

3. 计算求解

3.1 等价二次规划问题

利用表示定理并引入松弛变量,原问题可以转化为以下二次规划问题:

min ⁡ α , ξ , η ∑ i = 1 n ( τ ξ i + ( 1 − τ ) η i ) + λ α T K α s.t. y i = ∑ j = 1 n α j K ( x i , x j ) + ξ i − η i , i = 1 , … , n ξ i , η i ≥ 0 , i = 1 , … , n \begin{aligned} \min_{\alpha,\xi,\eta} & \sum_{i=1}^n (\tau\xi_i + (1-\tau)\eta_i) + \lambda \alpha^T K \alpha \\ \text{s.t.} & \quad y_i = \sum_{j=1}^n \alpha_j K(x_i,x_j) + \xi_i - \eta_i, \quad i=1,\ldots,n \\ & \quad \xi_i, \eta_i \geq 0, \quad i=1,\ldots,n \end{aligned} α,ξ,ηmins.t.i=1n(τξi+(1τ)ηi)+λαTKαyi=j=1nαjK(xi,xj)+ξiηi,i=1,,nξi,ηi0,i=1,,n

其中:

  • K ∈ R n × n K \in \mathbb{R}^{n \times n} KRn×n 是核矩阵, K i j = K ( x i , x j ) K_{ij} = K(x_i,x_j) Kij=K(xi,xj)
  • ξ i , η i \xi_i, \eta_i ξi,ηi 分别表示正向和负向的偏差
  • 矩阵形式可写为: y = K α + ξ − η y = K\alpha + \xi - \eta y=Kα+ξη

3.2 核函数选择

常用的核函数包括:

  1. 高斯核(RBF核):
    K ( x , y ) = exp ⁡ ( − ( x − y ) 2 2 σ 2 ) K(x,y) = \exp\left(-\frac{(x-y)^2}{2\sigma^2}\right) K(x,y)=exp(2σ2(xy)2)
    参数 σ > 0 \sigma > 0 σ>0 控制核的带宽

  2. 多项式核:
    K ( x , y ) = ( x y + c ) d K(x,y) = (xy + c)^d K(x,y)=(xy+c)d
    参数 d ∈ N d \in \mathbb{N} dN 是多项式的阶数, c ≥ 0 c \geq 0 c0 是偏置项

  3. 线性核:
    K ( x , y ) = x y + c K(x,y) = xy + c K(x,y)=xy+c
    这是多项式核在 d = 1 d=1 d=1 时的特例

  4. 拉普拉斯核:
    K ( x , y ) = exp ⁡ ( − ∣ x − y ∣ σ ) K(x,y) = \exp\left(-\frac{|x-y|}{\sigma}\right) K(x,y)=exp(σxy)
    类似于高斯核,但使用L1距离

  5. Sigmoid核:
    K ( x , y ) = tanh ⁡ ( α x y + c ) K(x,y) = \tanh(\alpha xy + c) K(x,y)=tanh(αxy+c)
    参数 α > 0 \alpha > 0 α>0 控制斜率, c ≥ 0 c \geq 0 c0 控制截距

4. 模型选择与参数估计

4.1 交叉验证(CV)

使用K折交叉验证来选择最优的超参数组合 ( λ , θ ) (\lambda, \theta) (λ,θ),其中 θ \theta θ 表示核函数的参数。交叉验证误差定义为:

CV ( λ , θ ) = 1 K ∑ k = 1 K 1 ∣ I k ∣ ∑ i ∈ I k ρ τ ( y i − f ^ λ , θ ( − k ) ( x i ) ) \text{CV}(\lambda,\theta) = \frac{1}{K}\sum_{k=1}^K \frac{1}{|I_k|}\sum_{i\in I_k} \rho_\tau(y_i - \hat{f}_{\lambda,\theta}^{(-k)}(x_i)) CV(λ,θ)=K1k=1KIk1iIkρτ(yif^λ,θ(k)(xi))

其中:

  • I k I_k Ik 是第k折的测试集索引集合
  • ∣ I k ∣ |I_k| Ik 是测试集的样本量
  • f ^ λ , θ ( − k ) \hat{f}_{\lambda,\theta}^{(-k)} f^λ,θ(k) 是在除第k折外的数据上训练得到的估计函数

该方法使用了并行计算来加速.

4.2 广义交叉验证(GCV)(待完善)

大规模数据集下的 CV 效率仍然较低

4.3 预测(组外)

对于新的输入点 x new x_{\text{new}} xnew,其预测值为:
f ^ ( x new ) = ∑ i = 1 n α ^ i K ( x new , x i ) \hat{f}(x_{\text{new}}) = \sum_{i=1}^n \hat{\alpha}_i K(x_{\text{new}}, x_i) f^(xnew)=i=1nα^iK(xnew,xi)

其中 α ^ \hat{\alpha} α^ 是使用最优超参数在全部训练数据上估计得到的系数向量。

4.4 置信区间(待完善)

5. 理论性质(待完善)

5.1 一致性

在适当的条件下,当样本量 n → ∞ n \rightarrow \infty n 时,估计的分位数函数将收敛到真实的条件分位数函数:
sup ⁡ x ∈ X ∣ f ^ n ( x ) − f τ ( x ) ∣ → 0 a.s. \sup_{x \in \mathcal{X}} |\hat{f}_n(x) - f_\tau(x)| \rightarrow 0 \quad \text{a.s.} xXsupf^n(x)fτ(x)0a.s.

其中 f τ ( x ) f_\tau(x) fτ(x) 是真实的条件 τ \tau τ 分位数函数。

5.2 收敛率

在光滑性假设下,收敛率为:
∥ f ^ n − f τ ∥ ∞ = O p ( ( log ⁡ n n ) s 2 s + d ) \|\hat{f}_n - f_\tau\|_{\infty} = O_p\left(\left(\frac{\log n}{n}\right)^{\frac{s}{2s+d}}\right) f^nfτ=Op((nlogn)2s+ds)

其中 s s s 是真实函数的光滑度, d d d 是输入空间的维数。

这个方法结合了分位数回归的鲁棒性和核方法的非线性建模能力,为条件分位数函数的估计提供了一个灵活而有效的框架。通过选择合适的核函数和参数,可以捕捉数据中的非线性关系,而正则化项则有助于控制过拟合,提高模型的泛化能力。

代码(R with 4.4.3, 待完善)

library(CVXR)
library(ggplot2)
library(progress)
library(pbmcapply)
library(patchwork)
library(viridis)# 生成示例数据
set.seed(123)  # 为了结果的可重复性
n = 300
x <- seq(-5, 5, length.out = n)  # 生成50个x值
y_true <- 2 * sin(x) + 3  # 真实的线性关系
y <- y_true + rnorm(n, 0, 1)  # 带有噪声的观测值# 分位损失
compute.quantile.loss <- function(y.true, y.pred, tau) {residuals <- y.true - y.predsum(residuals * (tau - (residuals < 0)))
}# 核函数
kernels <- function(kernel.type = "radial", kernel.params = list()) {# 定义高斯(径向基)核函数radial <- function(x, y, sigma = 1) {exp(-((x - y)^2)/(2 * sigma^2))}# 定义线性核函数linear <- function(x, y, c = 0) {x * y + c}# 定义多项式核函数polynomial <- function(x, y, degree = 2, c = 1) {(x * y + c)^degree}# 定义拉普拉斯核函数laplacian <- function(x, y, sigma = 1) {exp(-abs(x - y)/sigma)}# 定义sigmoid核函数sigmoid <- function(x, y, alpha = 1, c = 0) {tanh(alpha * x * y + c)}# 返回指定的核函数switch(kernel.type,"radial" = function(x, y) {radial(x, y, sigma = kernel.params$sigma %||% 1)},"linear" = function(x, y) {linear(x, y, c = kernel.params$c %||% 0)},"polynomial" = function(x, y) {polynomial(x, y, degree = kernel.params$degree %||% 2,c = kernel.params$c %||% 1)},"laplacian" = function(x, y) {laplacian(x, y, sigma = kernel.params$sigma %||% 1)},"sigmoid" = function(x, y) {sigmoid(x, y, alpha = kernel.params$alpha %||% 1,c = kernel.params$c %||% 0)},stop("Unsupported kernel type"))
}kernel.matrix <- function(x, kernel.func) {n <- length(x)K.reg <- matrix(nrow = n, ncol = n)for (i in 1:n) {for (j in 1:n) {K.reg[i, j] <- kernel.func(x[i], x[j])}}return(K.reg)
}# 主函数
solve.rkhs.quantile.regression <- function(x, y, tau, kernel.type = "radial",kernel.params = list(),lambda) {n <- length(y)alpha <- Variable(n)xi <- Variable(n, nonneg = TRUE)eta <- Variable(n, nonneg = TRUE)kernel.func <- kernels(kernel.type, kernel.params)K.reg <- kernel.matrix(x, kernel.func)# 构建优化问题objective <- Minimize(sum(tau * xi + (1 - tau) * eta) + lambda * quad_form(alpha, K.reg))constraints <- list(y == K.reg %*% alpha + xi - eta)# 求解优化问题problem <- Problem(objective, constraints)solution <- solve(problem)# 获取拟合值alpha.hat <- solution$getValue(alpha)fitted.values <- K.reg %*% alpha.hat# 计算残差residuals <- y - fitted.values# 计算有效自由度A <- K.reg %*% solve(K.reg + lambda * diag(n)) %*% t(K.reg)df <- sum(diag(A))# 计算诊断统计量mse <- mean(residuals^2)mae <- mean(abs(residuals))quantile.loss <- mean(tau * pmax(residuals, 0) + (tau - 1) * pmin(residuals, 0))return(list(# 模型参数alpha = alpha.hat,kernel.type = kernel.type,kernel.params = kernel.params,lambda = lambda,tau = tau,x.train = x,# 拟合结果fitted.values = fitted.values,residuals = residuals,# 诊断统计量df = df,mse = mse,mae = mae,quantile.loss = quantile.loss,# 优化信息convergence = solution$status,objective = solution$value,# 核矩阵信息Kmat = K.reg))
}select.params.cv <- function(x, y, tau, kernel.type = "radial",kernel.params.grid = list(sigma = c(0.1, 0.5, 1, 2)  # 默认为高斯核的参数网格),lambda.grid = 10^seq(-3, 0, by = 0.5),K = 5,parallel = FALSE) {# 初始化基本参数n <- length(y)fold.indices <- sample(rep(1:K, length.out = n))# 根据核函数类型创建参数网格param.grid <- switch(kernel.type,"radial" = expand.grid(sigma = kernel.params.grid$sigma,lambda = lambda.grid),"polynomial" = expand.grid(degree = kernel.params.grid$degree %||% c(2, 3),c = kernel.params.grid$c %||% c(0, 1),lambda = lambda.grid),"linear" = expand.grid(c = kernel.params.grid$c %||% 0,lambda = lambda.grid),"laplacian" = expand.grid(sigma = kernel.params.grid$sigma,lambda = lambda.grid),"sigmoid" = expand.grid(alpha = kernel.params.grid$alpha %||% c(0.5, 1),c = kernel.params.grid$c %||% c(0, 1),lambda = lambda.grid))# 定义用于计算单个参数组合交叉验证误差的函数compute.cv.error <- function(param.idx) {# 获取当前参数组合current.params <- param.grid[param.idx, ]current.lambda <- current.params$lambda# 提取核函数参数(去除lambda列)kernel.params <- as.list(current.params[names(current.params) != "lambda"])# 创建当前参数组合的核函数current.kernel <- kernels(kernel.type = kernel.type,kernel.params = kernel.params)cv.error <- 0fold.results <- list()# 对每个折叠进行交叉验证for (k in 1:K) {test.idx <- which(fold.indices == k)train.idx <- which(fold.indices != k)x.train <- x[train.idx]y.train <- y[train.idx]x.test <- x[test.idx]y.test <- y[test.idx]# 尝试拟合模型fit <- try({solve.rkhs.quantile.regression(x.train, y.train, tau = tau,kernel.type = kernel.type,kernel.params = kernel.params,lambda = current.lambda)}, silent = TRUE)if (!inherits(fit, "try-error")) {# 构建测试集的核矩阵K.test <- matrix(nrow = length(x.test), ncol = length(x.train))for (t in seq_along(x.test)) {for (s in seq_along(x.train)) {K.test[t, s] <- current.kernel(x.test[t], x.train[s])}}# 计算预测值和误差y.pred <- K.test %*% fit$alphafold.error <- compute.quantile.loss(y.test, y.pred, tau)cv.error <- cv.error + fold.errorfold.results[[k]] <- list(error = fold.error,predictions = y.pred,actual = y.test,convergence = fit$convergence)} else {cv.error <- Inffold.results[[k]] <- list(error = Inf,convergence = "failed")break}}list(mean.error = cv.error / K,fold.results = fold.results,kernel.params = kernel.params,lambda = current.lambda)}# 根据parallel参数选择计算方式if (parallel) {cv.results <- pbmclapply(1:nrow(param.grid), compute.cv.error,mc.cores = parallel::detectCores() - 1)} else {pb <- progress_bar$new(format = "  Computing [:bar] :percent eta: :eta",total = nrow(param.grid),clear = FALSE,width = 60)cv.results <- list()for (i in 1:nrow(param.grid)) {cv.results[[i]] <- compute.cv.error(i)pb$tick()}}# 提取交叉验证误差并重塑为矩阵形式n.kernel.params <- nrow(param.grid) / length(lambda.grid)cv.errors <- matrix(sapply(cv.results, function(x) x$mean.error),nrow = n.kernel.params,ncol = length(lambda.grid),byrow = TRUE)# 找到最优参数组合best.idx <- which(cv.errors == min(cv.errors), arr.ind = TRUE)best.params.idx <- (best.idx[1] - 1) * length(lambda.grid) + best.idx[2]best.params <- param.grid[best.params.idx, ]best.lambda <- best.params$lambdabest.kernel.params <- as.list(best.params[names(best.params) != "lambda"])# 使用最优参数进行最终拟合best.fit <- solve.rkhs.quantile.regression(x, y,tau = tau,kernel.type = kernel.type,kernel.params = best.kernel.params,lambda = best.lambda)# 计算诊断统计量cv.stats <- list(mean.cv.error = mean(cv.errors[is.finite(cv.errors)]),sd.cv.error = sd(cv.errors[is.finite(cv.errors)]),min.cv.error = min(cv.errors),max.cv.error = max(cv.errors[is.finite(cv.errors)]),convergence.rate = mean(!is.infinite(as.vector(cv.errors))),best.kernel.params = best.kernel.params,best.lambda = best.lambda)# 返回完整结果structure(list(# 最优参数kernel.type = kernel.type,best.kernel.params = best.kernel.params,best.lambda = best.lambda,# 交叉验证结果cv.errors = cv.errors,cv.results = cv.results,param.grid = param.grid,  # 保存完整的参数网格lambda.grid = lambda.grid,# 最优模型best.fit = best.fit,# 诊断信息cv.diagnostics = cv.stats,# 原始数据x = x,y = y,tau = tau,# 计算设置K = K,parallel = parallel,timestamp = Sys.time()), class = "rkhs.quantile.fit")
}# 预测函数:用于对新数据点进行预测
predict.rkhs.quantile <- function(object, newx) {# 使用已训练模型的参数对新数据进行预测# 参数:# object: 训练好的模型对象,包含训练数据和模型参数# newx: 需要预测的新数据点# 获取核函数类型和参数kernel.func <- kernels(kernel.type = object$kernel.type,kernel.params = object$kernel.params)# 构建新数据点与训练数据之间的核矩阵K.new <- matrix(nrow = length(newx), ncol = length(object$x.train))for (i in seq_along(newx)) {for (j in seq_along(object$x.train)) {K.new[i, j] <- kernel.func(newx[i], object$x.train[j])}}# 计算预测值y.pred <- K.new %*% object$alphareturn(y.pred)
}# 绘制模型诊断图
plot.rkhs.quantile <- function(fit) {# 创建一个包含四个诊断图的面板布局old.par <- par(mfrow = c(2, 2))on.exit(par(old.par))  # 确保在函数退出时恢复原始参数设置# 残差与拟合值的关系图plot(fit$fitted.values, fit$residuals,xlab = "Fitted Values", ylab = "Residuals",main = "Residuals vs Fitted",pch = 20)abline(h = 0, lty = 2, col = "gray")# 残差的正态Q-Q图qqnorm(fit$residuals, main = "Normal Q-Q Plot",pch = 20)qqline(fit$residuals, col = "red")# 残差的密度分布图res.density <- density(fit$residuals)plot(res.density,main = "Residuals Density",xlab = "Residuals",ylab = "Density")polygon(res.density, col = "lightgray", border = "gray")# Scale-Location图(标准化残差的平方根)plot(fit$fitted.values, sqrt(abs(fit$residuals)),xlab = "Fitted Values",ylab = expression(sqrt("|Residuals|")),main = "Scale-Location",pch = 20)# 添加平滑线以帮助识别趋势if(requireNamespace("stats", quietly = TRUE)) {try({smooth <- loess.smooth(fit$fitted.values, sqrt(abs(fit$residuals)))lines(smooth$x, smooth$y, col = "red", lwd = 2)}, silent = TRUE)}
}# 创建可视化函数
plot.cv.results <- function(fit) {# 获取核函数参数(除了lambda)kernel.param <- names(fit$param.grid)[1]  # 第一列应该是核函数参数# 准备数据cv.errors.df <- data.frame(param = rep(fit$param.grid[[kernel.param]][!duplicated(fit$param.grid[[kernel.param]])], each = length(fit$lambda.grid)),lambda = rep(fit$lambda.grid, times = length(unique(fit$param.grid[[kernel.param]]))),error = as.vector(fit$cv.errors))# 处理 Inf 值为 NAcv.errors.df$error[is.infinite(cv.errors.df$error)] <- NA# 创建热图# 首先在geom_tile()之前加上映射p1 = ggplot(cv.errors.df, aes(x = lambda, y = param)) +geom_tile(aes(fill = error)) +  # 在这里指定fill映射scale_fill_viridis_c(na.value = "grey90") +geom_point(data = data.frame(lambda = fit$best.lambda,param = unlist(fit$best.kernel.params)[1]),color = "red",size = 3) +labs(title = paste("Cross-validation Error Heatmap for", fit$kernel.type, "kernel"),x = "Lambda",y = kernel.param) +theme_minimal() +theme(panel.grid = element_blank())# 参数效应图p2 <- ggplot(cv.errors.df[!is.na(cv.errors.df$error), ], aes(x = lambda, y = error, color = factor(param))) +geom_line() +scale_x_log10() +labs(x = "Lambda (log scale)",y = "CV Error",color = kernel.param  # 使用实际的参数名) +theme_minimal()# 组合图形if (requireNamespace("patchwork", quietly = TRUE)) {p1 / p2} else {p1}
}cv.param <- select.params.cv(x, y, tau = 0.5,kernel.type = "radial",kernel.params.grid = list(sigma = c(0.1, 0.5, 1, 1.5, 2, 2.5, 3)),lambda.grid = seq(0, 5, 0.5),parallel = TRUE
)plot.cv.results(cv.param)# 查看诊断信息
print(cv.param$cv.diagnostics)
# 预测新数据
newx <- seq(min(x), max(x), length.out = 100)
predict.rkhs.quantile(cv.param$best.fit, newx)# 绘制诊断图
plot.rkhs.quantile(cv.param$best.fit)# 使用选择的参数进行拟合
tau_levels <- c(0.25, 0.5, 0.75)
data.rq <- data.frame()
for (tau in tau_levels) {fit.rq <- solve.rkhs.quantile.regression(x, y, tau = tau,kernel.type = 'radial',kernel.params = list(cv.param$best.kernel.params),lambda = cv.param$best.lambda)res = data.frame(x = x, y = fit.rq$fitted.values, tau = tau)data.rq <- rbind(data.rq, res)
}fit.ols = solve.rkhs.regression(x, y,kernel.type = "radial",kernel.params = list(sigma = 1),lambda = 0.2)data.ols = data.frame(x = x, y = fit.ols$fitted.values)
data.ols$type = "OLS"  # 添加类型标识
data.rq$type = paste0("tau= ", data.rq$tau)  # 为每个分位数添加描述性标签
data_points = data.frame(x = x, y = y)ggplot() +geom_point(data = data_points, aes(x = x, y = y),alpha = 0.5,color = "gray50") +# OLS回归线geom_line(data = data.ols,aes(x = x, y = y, color = "OLS"),    # 将OLS作为一个特殊的类别linetype = "dashed",   size = 1) +# 分位数回归线geom_line(data = data.rq,aes(x = x, y = y, color = type),    size = 1) +theme(legend.position = "bottom",legend.title = element_text(size = 12),legend.text = element_text(size = 10),plot.title = element_text(size = 14, face = "bold"),axis.title = element_text(size = 12),axis.text = element_text(size = 10),panel.grid.major = element_line(color = "gray90"),panel.grid.minor = element_blank()) +# 根据实际的类别名称设置颜色scale_color_manual(name = "Regression",values = c("OLS" = "black","tau= 0.25" = "#E41A1C","tau= 0.5" = "#4DAF4A","tau= 0.75" = "#377EB8")) +# 设置图例guides(color = guide_legend(title = "Regression",nrow = 1,override.aes = list(linetype = c("dashed", "solid", "solid", "solid")  # 对应四种类型)))

运行结果
在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com