您的位置:首页 > 游戏 > 手游 > 上海企业公示信息查询系统_国际新闻最新消息今天新闻_百度163黄页关键词挖掘_推广普通话文字内容

上海企业公示信息查询系统_国际新闻最新消息今天新闻_百度163黄页关键词挖掘_推广普通话文字内容

2024/12/23 4:54:43 来源:https://blog.csdn.net/qq_44144025/article/details/144426285  浏览:    关键词:上海企业公示信息查询系统_国际新闻最新消息今天新闻_百度163黄页关键词挖掘_推广普通话文字内容
上海企业公示信息查询系统_国际新闻最新消息今天新闻_百度163黄页关键词挖掘_推广普通话文字内容

参考文章

通过例子理解最大似然估计
最大似然估计和最小二乘估计的区别与联系
SLAM的发展以及分类
移动机器人运动模型
深入理解最大似然估计与最大后验估计:概率中的两大估计法
从贝叶斯公式到卡尔曼滤波
Kalman滤波通俗理解+实际应用

简单总结

概率: 在一定条件下,某件事发生的可能性。概率越大,这件事越有可能发生。
举例:已知小车运动模型(模型)和当前速度分布(条件),求运动到B点的可能性多大(事件)。
似然: 某件事已经发生,在不同条件下的可能性。似然越大,这件事越可能在该条件下发生。
举例:已知小车运动模型(模型)和运动到了B点(事件),求小车速度分布(条件)最可能是多少?

最大似然估计: 从模型中抽取该n组样本观测值,最合理的参数估计量是让这个事件发生概率最大。
从概率角度出发,估计的是概率分布的参数,最大化似然概率函数。

最小二乘法: 从模型中抽取该n组样本观测值,最合理的参数估计量是使模型能最好地拟合样本数据。
从优化角度出发,估计的是拟合模型的参数,最小化估计值和观测值之差的平方和。

最大后验估计: 一种贝叶斯估计方法,结合了先验分布和似然函数。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com