您的位置:首页 > 游戏 > 手游 > 有效的网络推广_软件app制作公司_如何让关键词排名靠前_如何优化网络延迟

有效的网络推广_软件app制作公司_如何让关键词排名靠前_如何优化网络延迟

2025/1/12 0:45:19 来源:https://blog.csdn.net/qq_41915671/article/details/143449032  浏览:    关键词:有效的网络推广_软件app制作公司_如何让关键词排名靠前_如何优化网络延迟
有效的网络推广_软件app制作公司_如何让关键词排名靠前_如何优化网络延迟

[1]Semi-Supervised Temporal Meta-Learning Framework for Wind Turbine Bearing Fault Diagnosis Under Limited Annotation Data

问题背景

  1. the fault data are so scarce that it is time-consuming to acquire a well behaved deep learning model
  2. much unlabeled data cannot be adequately utilized to explore useful fault information without prior.

方法思路

(1)a temporal convolutional module is proposed to relieve overfitting due to the depth of the model, which can fully excavate temporal features along the depth of the network.
(2)A novel deep learning generalization framework SeMeF—is proposed to make full use of massive unlabeled data and limited annotation data.
在这里插入图片描述

[2] A Meta-Learning Method for Electric Machine Bearing Fault Diagnosis Under Varying Working Conditions With Limited Data

问题背景

perform FD with a limited training data

方法思路

(1)a four layer CNN is used for feature learning and a simple convolution structure makes the training more effcient
(2) The meta-training process primarily completes the knowledge accumulation of prior tasks.
在这里插入图片描述

[3] Semi-supervised adaptive anti-noise meta-learning for few-shot industrial gearbox fault diagnosis

问题背景

obtain sufficient labeled data for FD is challenging

方法思路

(1)a residual network with a Morlet Wavelet layer is used to extract signal features
(2)sample-level attention is defined to select unlabeled samples that are more similar to labeled sample prototypes
(3)The adaptive metric is used to obtain the relational distance functions of labeled samples and unlabeled samples
在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com