您的位置:首页 > 娱乐 > 八卦 > 日本正能量不良网址直接进入_淄博网站建设公司_平台推广是什么_百度首页 百度

日本正能量不良网址直接进入_淄博网站建设公司_平台推广是什么_百度首页 百度

2024/12/23 11:21:40 来源:https://blog.csdn.net/FL1623863129/article/details/142688868  浏览:    关键词:日本正能量不良网址直接进入_淄博网站建设公司_平台推广是什么_百度首页 百度
日本正能量不良网址直接进入_淄博网站建设公司_平台推广是什么_百度首页 百度

yolov11官方框架:https://github.com/ultralytics/ultralytics

【算法介绍】

在C++中使用纯OpenCV部署YOLOv11进行目标检测是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

以下是一个大致的步骤指南,用于在C++中使用OpenCV部署YOLOv11(假设你已经有了YOLOv11的ONNX模型):

  1. 安装依赖
    • 确保你的开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。
  2. 准备模型
    • 将YOLOv11模型从PyTorch转换为ONNX格式。这通常涉及使用PyTorch的torch.onnx.export函数。
    • 确保你有YOLOv11的ONNX模型文件、配置文件(描述模型架构)和类别名称文件。
  3. 编写C++代码
    • 使用OpenCV的DNN模块加载ONNX模型。
    • 预处理输入图像(如调整大小、归一化等),以符合模型的输入要求。
    • 将预处理后的图像输入到模型中,并获取检测结果。
    • 对检测结果进行后处理,包括解析输出、应用非极大值抑制(NMS)和绘制边界框。
  4. 编译和运行
    • 使用C++编译器(如g++)编译你的代码。
    • 运行编译后的程序,输入图像或视频,并观察目标检测结果。

需要注意的是,由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息(如特征图、置信度、边界框坐标等),因此你需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

此外,由于OpenCV的DNN模块对ONNX的支持可能有限,某些YOLOv11的特性(如自定义层、特定的激活函数等)可能无法在OpenCV中直接实现。在这种情况下,你可能需要寻找替代方案,如使用其他深度学习库(如TensorRT、ONNX Runtime等)来加载和运行模型,并通过C++接口与这些库进行交互。

总之,在C++中使用纯OpenCV部署YOLOv11是一项具有挑战性的任务,需要深入理解YOLOv11的模型架构、OpenCV的DNN模块以及ONNX格式。如果你不熟悉这些领域,可能需要花费更多的时间和精力来学习和解决问题。

【效果展示】

【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【部分实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov11.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov11(_Tp& cls,Mat& img,string& model_path)
{Net net;if (cls.ReadModel(net, model_path, false)) {cout << "read net ok!" << endl;}else {return -1;}//生成随机颜色vector<Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b, g, r));}vector<OutputSeg> result;if (cls.Detect(img, net, result)) {DrawPred(img, result, cls._className, color);}else {cout << "Detect Failed!" << endl;}system("pause");return 0;
}template<typename _Tp>
int video_demo(_Tp& cls, string& model_path)
{vector<Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b, g, r));}vector<OutputSeg> result;cv::VideoCapture cap("D:\\car.mp4");if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}Mat frame;
#ifdef VIDEO_OPENCVNet net;if (cls.ReadModel(net, model_path, true)) {cout << "read net ok!" << endl;}else {cout << "read net failured!" << endl;return -1;}#elseif (cls.ReadModel(model_path, true)) {cout << "read net ok!" << endl;}else {cout << "read net failured!" << endl;return -1;}#endifwhile (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}result.clear();
#ifdef VIDEO_OPENCVif (cls.Detect(frame, net, result)) {DrawPred(frame, result, cls._className, color, true);}
#elseif (cls.OnnxDetect(frame, result)) {DrawPred(frame, result, cls._className, color, true);}
#endifint k = waitKey(10);if (k == 27) { //esc break;}}cap.release();system("pause");return 0;
}int main() {string detect_model_path = "./yolo11n.onnx";Yolov11 detector;video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11目标检测onnx模型演示源码+模型_哔哩哔哩_bilibili【测试环境】vs2019cmake==3.24.3opencv==4.8.0更多实现细节和源码下载参考博文https://blog.csdn.net/FL1623863129/article/details/142688868, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,将yolov5-6.2封装成一个类几行代码完成语义分割任务,C++使用纯opencv去部署yolov8官方obb旋转框检测,使用C#的winform部署yolov8的onnx实例分割模型,超变态的AI换脸工具,解除限制!解锁高级功能!,YOLOv8检测界面-PyQt5实现,基于onnx模型加密与解密深度学习模型保护方法介绍,基于opencv封装易语言读写视频操作模块支持视频读取和写出,使用易语言调用opencv进行视频和摄像头每一帧处理,使用纯opencv部署yolov5目标检测模型onnxicon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1Nc4LekE1d/
【源码下载】

https://download.csdn.net/download/FL1623863129/89837170

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com