一、项目结构
src/main/java
├── com.example
│ ├── config
│ │ └── TableInitializer.java # 动态建表配置
│ ├── entity
│ │ └── Order.java # JPA实体类
│ ├── repository
│ │ └── OrderRepository.java # JPA Repository接口
│ └── DemoApplication.java # 启动类
resources
├── application.yml # ShardingSphere配置
二、完整代码实现
- pom.xml 依赖
<dependencies><!-- Spring Boot Starter --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- ShardingSphere JDBC --><dependency><groupId>org.apache.shardingsphere</groupId><artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId><version>5.3.2</version></dependency><!-- Spring Data JPA --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-jpa</artifactId></dependency><!-- MySQL驱动 --><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.28</version></dependency><!-- 日期时间处理 --><dependency><groupId>org.hibernate</groupId><artifactId>hibernate-java8</artifactId></dependency>
</dependencies>
- application.yml 配置
spring:shardingsphere:# 数据源配置datasource:names: dsds:driver-class-name: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://localhost:3306/test_db?serverTimezone=UTCusername: rootpassword: root# 分片规则rules:sharding:tables:t_order: # 逻辑表名actual-data-nodes: ds.t_order_$->{2020..2030} # 实际表结构table-strategy:standard:sharding-column: order_time # 分片字段sharding-algorithm-name: order-year-intervalsharding-algorithms:order-year-interval:type: INTERVALprops:datetime-pattern: "yyyy-MM-dd HH:mm:ss"datetime-lower: "2020-01-01 00:00:00"datetime-upper: "2030-12-31 23:59:59"sharding-suffix-pattern: "yyyy" # 表后缀格式datetime-interval-amount: 1 # 分片间隔1年# 其他配置props:sql-show: true # 显示SQL日志jpa:hibernate:ddl-auto: none # 禁用自动建表show-sql: trueproperties:hibernate:dialect: org.hibernate.dialect.MySQL8Dialect
- 实体类 Order.java
package com.example.entity;import javax.persistence.*;
import java.time.LocalDateTime;@Entity
@Table(name = "t_order") // 对应逻辑表名
public class Order {@Id@GeneratedValue(generator = "snowflake") // 使用分布式IDprivate Long id;@Column(name = "order_time", nullable = false)private LocalDateTime orderTime; // 分片关键字段@Column(length = 50)private String orderNo;private BigDecimal amount;// Getters & Setters// 省略...
}
- Repository接口 OrderRepository.java
package com.example.repository;import com.example.entity.Order;
import org.springframework.data.jpa.repository.JpaRepository;public interface OrderRepository extends JpaRepository<Order, Long> {// 根据时间范围查询(自动路由到对应年度表)List<Order> findByOrderTimeBetween(LocalDateTime start, LocalDateTime end);
}
- 动态建表配置 TableInitializer.java
package com.example.config;import javax.annotation.PostConstruct;
import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import java.time.Year;
import java.util.stream.IntStream;@Component
public class TableInitializer {@Autowiredprivate DataSource dataSource;@PostConstructpublic void initTables() throws SQLException {try (Connection conn = dataSource.getConnection();Statement stmt = conn.createStatement()) {// 自动创建2020-2030年的物理表IntStream.rangeClosed(2020, 2030).forEach(year -> {String sql = "CREATE TABLE IF NOT EXISTS t_order_" + year + " (" +"id BIGINT PRIMARY KEY, " +"order_time DATETIME NOT NULL, " +"order_no VARCHAR(50), " +"amount DECIMAL(10,2))";try {stmt.executeUpdate(sql);} catch (SQLException e) {e.printStackTrace();}});}}
}
三、测试用例
@SpringBootTest
public class OrderTest {@Autowiredprivate OrderRepository orderRepository;@Testvoid testInsert() {Order order = new Order();order.setOrderTime(LocalDateTime.of(2023, 5, 20, 14, 30));order.setOrderNo("NO202305201430");order.setAmount(new BigDecimal("999.99"));orderRepository.save(order); // 数据会插入t_order_2023表}@Testvoid testQuery() {LocalDateTime start = LocalDateTime.of(2023, 1, 1, 0, 0);LocalDateTime end = LocalDateTime.of(2023, 12, 31, 23, 59);List<Order> orders = orderRepository.findByOrderTimeBetween(start, end);System.out.println("Query Result: " + orders.size());}
}
四、关键点说明
1. 分片算法选择
使用INTERVAL算法实现按年分表,需明确配置:
datetime-lower/datetime-upper
:时间范围边界sharding-suffix-pattern
:表名后缀格式(yyyy表示年份)
2. 动态表管理
- 通过TableInitializer在应用启动时自动创建未来10年的物理表
- 若需要更灵活的动态扩展,可结合数据库定时任务创建新表
3. 路由规则
- 写入:根据order_time字段值自动路由到对应年度表
- 查询:若条件包含order_time范围,ShardingSphere自动合并多表结果
4. 事务处理
- 单年度操作支持本地事务
- 跨年度操作需使用
@ShardingTransactionType(TransactionType.XA)
分布式事务
五、注意事项
1. 时间字段精度
确保实体类中order_time字段类型与数据库DATETIME类型匹配
2. 表名策略扩展
若需要支持历史数据归档,可结合Hint分片强制路由到指定表
3. 索引优化
每个年度表需单独创建索引(如order_time字段索引)
4. 配置更新
当超过预设的datetime-upper年份时,需调整配置并创建新表
以上代码可实现:订单数据按年份自动存储到t_order_2023、t_order_2024等表中,且JPA操作完全透明化。通过动态建表机制,避免手动维护物理表结构。