您的位置:首页 > 娱乐 > 八卦 > 快速提升关键词排名软件_重庆网站设计最加科技_百度广告收费表_搜索引擎营销优化

快速提升关键词排名软件_重庆网站设计最加科技_百度广告收费表_搜索引擎营销优化

2025/4/18 17:53:35 来源:https://blog.csdn.net/chengyq116/article/details/146267725  浏览:    关键词:快速提升关键词排名软件_重庆网站设计最加科技_百度广告收费表_搜索引擎营销优化
快速提升关键词排名软件_重庆网站设计最加科技_百度广告收费表_搜索引擎营销优化

Stable Diffusion Models

  • 1. CompVis Stable Diffusion
  • 2. Hugging Face Diffusers
  • 3. Contrastive Language-Image Pre-Training (CLIP)
  • References

We recommend you use Stable Diffusion with Hugging Face Diffusers library. You can also use the original CompVis code.

1. CompVis Stable Diffusion

CompVis Stable Diffusion
https://github.com/compvis/stable-diffusion

Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.

  • CompVis/stable-diffusion-v-1-1-original

https://huggingface.co/CompVis/stable-diffusion-v-1-1-original

  • CompVis/stable-diffusion-v-1-2-original

https://huggingface.co/CompVis/stable-diffusion-v-1-2-original

  • CompVis/stable-diffusion-v-1-3-original

https://huggingface.co/CompVis/stable-diffusion-v-1-3-original

  • CompVis/stable-diffusion-v-1-4-original

https://huggingface.co/CompVis/stable-diffusion-v-1-4-original

2. Hugging Face Diffusers

Hugging Face Diffusers
https://github.com/huggingface/diffusers

Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.

  • CompVis/stable-diffusion-v1-1

https://huggingface.co/CompVis/stable-diffusion-v1-1

  • CompVis/stable-diffusion-v1-2

https://huggingface.co/CompVis/stable-diffusion-v1-2

  • CompVis/stable-diffusion-v1-3

https://huggingface.co/CompVis/stable-diffusion-v1-3

  • CompVis/stable-diffusion-v1-4

https://huggingface.co/CompVis/stable-diffusion-v1-4

3. Contrastive Language-Image Pre-Training (CLIP)

  • openai/clip-vit-large-patch14

https://huggingface.co/openai/clip-vit-large-patch14

  • CLIP

https://github.com/openai/CLIP

CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs.

References

[1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com