您的位置:首页 > 娱乐 > 明星 > 网站架构策划_项目网络技术_营销课程培训视频_国外b站不收费免费2023

网站架构策划_项目网络技术_营销课程培训视频_国外b站不收费免费2023

2025/2/24 23:53:24 来源:https://blog.csdn.net/weixin_45390670/article/details/145747979  浏览:    关键词:网站架构策划_项目网络技术_营销课程培训视频_国外b站不收费免费2023
网站架构策划_项目网络技术_营销课程培训视频_国外b站不收费免费2023

电脑配置:Xavier-nx、ubuntu 18.04、ros melodic

激光雷达:Livox_Mid-360

结果展示:左边Mid360+Fast-lio感知建图,右边Ego-planner运动规划

1、读取雷达数据并显示

无人机避障——感知篇(采用Livox-Mid360激光雷达获取点云数据显示)-CSDN博客

看看雷达数据话题imu以及lidar两个话题 

2、读取雷达数据并复现fast-lio 

无人机避障——感知篇(采用Mid360复现Fast-lio)-CSDN博客

启动fast-lio,确保话题有输出 

 由于此处不需要建图,因此不打开rviz,launch文件如下修改:

<launch>
<!-- Launch file for Livox MID360 LiDAR --><arg name="rviz" default="true" /><rosparam command="load" file="$(find fast_lio)/config/mid360.yaml" /><param name="feature_extract_enable" type="bool" value="0"/><!-- 100HZ的bag  point_filter_num建议设置为1;   10HZ的bag建议设置为2或3 --><param name="point_filter_num" type="int" value="3"/><param name="max_iteration" type="int" value="3" /><param name="filter_size_surf" type="double" value="0.5" /><param name="filter_size_map" type="double" value="0.5" /><param name="cube_side_length" type="double" value="1000" /><param name="runtime_pos_log_enable" type="bool" value="0" /><node pkg="fast_lio" type="fastlio_mapping" name="laserMapping" output="screen" /> <!-- <group if="$(arg rviz)"><node launch-prefix="nice" pkg="rviz" type="rviz" name="rviz" args="-d $(find fast_lio)/rviz_cfg/loam_livox.rviz" /></group> --></launch>

然后运行:

roslaunch fast_lio mapping_mid360.launch

看一下话题:

rostopic list

 看下/Odometry与/cloud_registered话题消息

rostopic echo /Odometry
rostopic echo /cloud_registered

/Odometry结果: 

 /cloud_registered结果:

3、 下载ego-planner源码并编译运行

下载源码:

GitHub - ZJU-FAST-Lab/Fast-Drone-250: hardware and software design of the 250mm autonomous drone

 [注意]:根据不同的报错下载相应的包,因为这个包会携带实际飞行的Mavros包,以及视觉包,进入到上面的github界面以后,可以把第七章的内容全部安装一下,不然catkin_make的时候会报错,当然也可以直接编译,等报哪个错的时候进行解决就可以了。

 Opencv报错:

其他的报错都还好,碰到了比较麻烦的opencv路径版本等报错,解决时间比较长。总结的报错如下: 

报错1:

CMake Error at /opt/ros/melodic/share/cv_bridge/cmake/cv_bridgeConfig.cmake:113

解决: 

CMake Error at /opt/ros/melodic/share/cv_bridge/cmake/cv_bridgeConfig.cmake:113-CSDN博客

报错2: 

nvidia@Xavier-NX:~/Fast-Drone-250$ locate opencv2/core/core.hpp /home/nvidia/opencv/modules/core/include/opencv2/core/core.hpp /usr/include/opencv4/opencv2/core/core.hpp /usr/local/opencv346/include/opencv2/core/core.hpp

解决:

1、通过vscode的全局搜索功能,将find_package(OpenCV 4 REQUIRED)和find_package(OpenCV 3 REQUIRED)全部替换成find_package(OpenCV REQUIRED)。

2、如果 OpenCV 安装在非标准路径,可以通过以下命令检查 opencv2/core/core.hpp 的位置:

locate opencv2/core/core.hpp

 3、如果 OpenCV 被安装在非标准路径也就是上面找到的路径,可以通过设置环境变量来让编译器找到头文件。你可以在终端中运行以下命令:

[注意]:/usr/local/opencv346/include这个是我用第二步locate到的路径,如果没有locate出来的话应该是没有安装opencv,建议安装opencv3.

export CPATH=$CPATH:/usr/local/opencv346/include

或者,在 .bashrc 文件中添加以下行:

export CPATH=$CPATH:/usr/local/opencv346/include

然后重新加载 .bashrc 文件:

source ~/.bashrc

重新编译: 

编译成功!!! 

只启动运动规划端仿真-ego-planner 

nvidia@Xavier-NX:~/Fast-Drone-250$ source devel/setup.bash
nvidia@Xavier-NX:~/Fast-Drone-250$ roslaunch ego_planner single_run_in_sim.launch

视频如下:

Ego-planner仿真-CSDN直播

Ego-planner仿真

启动mid360建图fast-lio到ego-planner运动规划仿真:

然后为了在仿真中测试下从mid360经过fast-lio得到的建图和ego-planner进行运动规划,在single_run_in_exp.launch文件中进行odom_topic和cloud_topic两个话题的更改为mid360中的/Odometry与/cloud_registered话题如下:

<launch><!-- number of moving objects --><arg name="obj_num" value="10" /><arg name="drone_id" value="0"/><arg name="map_size_x" value="100"/><arg name="map_size_y" value="50"/><arg name="map_size_z" value="3.0"/><arg name="odom_topic" value="/Odometry"/><!-- main algorithm params --><include file="$(find ego_planner)/launch/advanced_param_exp.xml"><arg name="drone_id" value="$(arg drone_id)"/><arg name="map_size_x_" value="$(arg map_size_x)"/><arg name="map_size_y_" value="$(arg map_size_y)"/><arg name="map_size_z_" value="$(arg map_size_z)"/><arg name="odometry_topic" value="$(arg odom_topic)"/><arg name="obj_num_set" value="$(arg obj_num)" /><!-- camera pose: transform of camera frame in the world frame --><!-- depth topic: depth image, 640x480 by default --><!-- don't set cloud_topic if you already set these ones! --><arg name="camera_pose_topic" value="nouse1"/><arg name="depth_topic" value="/camera/depth/image_rect_raw"/><!-- topic of point cloud measurement, such as from LIDAR  --><!-- don't set camera pose and depth, if you already set this one! --><arg name="cloud_topic" value="/cloud_registered"/><!-- intrinsic params of the depth camera --><arg name="cx" value="323.3316345214844"/><arg name="cy" value="234.95498657226562"/><arg name="fx" value="384.39654541015625"/><arg name="fy" value="384.39654541015625"/><!-- maximum velocity and acceleration the drone will reach --><arg name="max_vel" value="0.5" /><arg name="max_acc" value="6.0" /><!--always set to 1.5 times grater than sensing horizen--><arg name="planning_horizon" value="6" /><arg name="use_distinctive_trajs" value="false" /><!-- 1: use 2D Nav Goal to select goal  --><!-- 2: use global waypoints below  --><arg name="flight_type" value="1" /><!-- global waypoints --><!-- It generates a piecewise min-snap traj passing all waypoints --><arg name="point_num" value="1" /><arg name="point0_x" value="15" /><arg name="point0_y" value="0" /><arg name="point0_z" value="1" /><arg name="point1_x" value="0.0" /><arg name="point1_y" value="0.0" /><arg name="point1_z" value="1.0" /><arg name="point2_x" value="15.0" /><arg name="point2_y" value="0.0" /><arg name="point2_z" value="1.0" /><arg name="point3_x" value="0.0" /><arg name="point3_y" value="0.0" /><arg name="point3_z" value="1.0" /><arg name="point4_x" value="15.0" /><arg name="point4_y" value="0.0" /><arg name="point4_z" value="1.0" /></include><!-- trajectory server --><node pkg="ego_planner" name="drone_$(arg drone_id)_traj_server" type="traj_server" output="screen"><!-- <remap from="position_cmd" to="/setpoints_cmd"/> --><remap from="~planning/bspline" to="drone_$(arg drone_id)_planning/bspline"/><param name="traj_server/time_forward" value="1.0" type="double"/></node>
</launch>

启动launch文件:

nvidia@Xavier-NX:~/Fast-Drone-250$ roslaunch ego_planner single_run_in_exp.launch
nvidia@Xavier-NX:~/Fast-Drone-250$ roslaunch ego_planner rviz.launch

视频如下:

Mid360+Fastlio-SLAM+Egoplanner-CSDN直播

Mid360+Fastlio-SLAM+Egoplanner

后续进行实际飞行准备测试!!!

4、参考资料:

基于fast-lio2来跑下ego-planner(最后基于真实的livox mid 40静态下跑了) 20220913_fast-lio ego-planner-CSDN博客

LIVOX-mid360+fastlio+ego--planner实际结合(无人机实际定位、建图、导航、避障)_slam无人机mid360-CSDN博客 自己部署FAST LIO2操作记录 20220912_fastlio2安装-CSDN博客

 自己基于livox mid40跑FAST-LIO2 20220921_livoxmid40 fast-lio-CSDN博客

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com