《Keras 3 :使用 Vision Transformers 进行物体检测》
作者:Karan V. Dave
创建日期:2022 年 3 月 27
日最后修改时间:2023 年 11 月 20
日描述:使用 Vision Transformer 进行对象检测的简单 Keras 实现。
(i) 此示例使用 Keras 3
在 Colab 中查看
GitHub 源
介绍
Alexey Dosovitskiy 等人的文章 Vision Transformer (ViT) 架构。 表明直接应用于图像序列的纯 transformer 补丁可以在对象检测任务中表现良好。
在这个 Keras 示例中,我们实现了一个对象检测 ViT 我们在加州理工学院 101 数据集上对其进行训练,以检测给定图像中的飞机。
导入和设置
import osos.environ["KERAS_BACKEND"] = "jax" # @param ["tensorflow", "jax", "torch"]import numpy as np
import keras
from keras import layers
from keras import ops
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import scipy.io
import shutil
准备数据集
我们使用加州理工学院 101 数据集。
# Path to images and annotations
path_images = "./101_ObjectCategories/airplanes/"
path_annot = "./Annotations/Airplanes_Side_2/"path_to_downloaded_file = keras.utils.get_file(fname="caltech_101_zipped",origin="https://data.caltech.edu/records/mzrjq-6wc02/files/caltech-101.zip",extract=True,archive_format="zip", # downloaded file formatcache_dir="/", # cache and extract in current directory
)
download_base_dir = os.path.dirname(path_to_downloaded_file)# Extracting tar files found inside main zip file
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "101_ObjectCategories.tar.gz"), "."
)
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "Annotations.tar"), "."
)# list of paths to images and annotations
image_paths = [f for f in os.listdir(path_images) if os.path.isfile(os.path.join(path_images, f))
]
annot_paths = [f for f in os.listdir(path_annot) if os.path.isfile(os.path.join(path_annot, f))
]image_paths.sort()
annot_paths.sort()image_size = 224 # resize input images to this sizeimages, targets = [], []# loop over the annotations and images, preprocess them and store in lists
for i in range(0, len(annot_paths)):# Access bounding box coordinatesannot = scipy.io.loadmat(path_annot + annot_paths[i])["box_coord"][0]top_left_x, top_left_y = annot[2], annot[0]bottom_right_x, bottom_right_y = annot[3], annot[1]image = keras.utils.load_img(path_images + image_paths[i],)(w, h) = image.size[:2]# resize imagesimage = image.resize((image_size, image_size))# convert image to array and append to listimages.append(keras.utils.img_to_array(image))# apply relative scaling to bounding boxes as per given image and append to listtargets.append((float(top_left_x) / w,float(top_left_y) / h,float(bottom_right_x) / w,float(bottom_right_y) / h,))# Convert the list to numpy array, split to train and test dataset
(x_train), (y_train) = (np.asarray(images[: int(len(images) * 0.8)]),np.asarray(targets[: int(len(targets) * 0.8)]),
)
(x_test), (y_test) = (np.asarray(images[int(len(images