您的位置:首页 > 娱乐 > 明星 > 上线了建站怎么收费_创建一个企业网站流程的步骤_优化网站推广教程整站_健康码防疫核验一体机

上线了建站怎么收费_创建一个企业网站流程的步骤_优化网站推广教程整站_健康码防疫核验一体机

2025/3/12 16:47:37 来源:https://blog.csdn.net/m0_74349248/article/details/145079693  浏览:    关键词:上线了建站怎么收费_创建一个企业网站流程的步骤_优化网站推广教程整站_健康码防疫核验一体机
上线了建站怎么收费_创建一个企业网站流程的步骤_优化网站推广教程整站_健康码防疫核验一体机

MCU: STM32F407VET6

官方最高稳定频率:168MHz

工具:STM32CubeMX

        本篇仅仅只是提供超频(默认指的是主频)的简单方法,并未涉及STM32超频极限等问题。原理很简单,通过设置锁相环的倍频系数达到不同的频率,从而实现超频。需要注意的是,运行时切换频率不能直接修改,因为此时用的HSE时钟是经由锁相环产生的,直接修改锁相环会出现问题。解决办法是,切换为HSI并关闭锁相环,然后重新配置锁相环,最后再重新切换HSE。

        最后切记,超频有风险!!

一、时钟配置

        使用STM32CubeMX可以很方便地配置时钟树,配置时钟树时需要先知道开发板所用的外部晶振频率。从下图可知晓,使用的外部晶振为12MHz

然后经由STM32CubeMX自动配置时钟树,从这里可以看到锁相环里能看到M、N、P三个参数,其中N是倍频系数,最高可达432。这里我们目标是配置为168MHz,即官方标称频率

        使用STM32CubeMX生成代码后,我们可以在Core/Src目录下找到main.c中的SystemClock_Config函数。从代码中可以轻易看到,PLLM、PLLN、PLLP就是前面看到的M、N、P三个参数。同时由于外部晶振频率为12MHz,自动配置过程中,M和P分频系数分别为6和2恰好可以把12MHz分频为1MHz,使得倍频系数即为主频频率(MHz)。

        后面超频时,利用的就是下面代码。

void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Configure the main internal regulator output voltage*/__HAL_RCC_PWR_CLK_ENABLE();__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 6;RCC_OscInitStruct.PLL.PLLN = 168;RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;RCC_OscInitStruct.PLL.PLLQ = 4;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK){Error_Handler();}
}

二、超频

         根据前面所言,运行时直接修改所用的时钟会发生错误,所以需要切换时钟源后再修改。下面两个函数用于切换时钟源

void SystemClock_SwitchToHSI(void)
{// 将系统时钟切换到 HSI__HAL_RCC_SYSCLK_CONFIG(RCC_SYSCLKSOURCE_HSI);// 等待时钟切换完成while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) {}
}void SystemClock_SwitchToPLL(void)
{// 将系统时钟切换到 PLL__HAL_RCC_SYSCLK_CONFIG(RCC_SYSCLKSOURCE_PLLCLK);// 等待时钟切换完成while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) {}
}

接下来,在系统时钟配置函数的基础上,修改代码。在配置PLL前,先禁用全局中断,防止时钟中断等影响配置过程,然后切换时钟源为HSI并禁用锁相环

    // 禁用全局中断__disable_irq();// 切换到 HSISystemClock_SwitchToHSI();// 禁用 PLL__HAL_RCC_PLL_DISABLE();

        然后是配置PLL过程,此时参考系统时钟初始化代码,其中plln是传入的形参变量(锁相环倍频系数)。需要注意的是主频频率提高后,Flash的等待周期要相应延长,原为FLASH_LATENCY_5,这里简单判断了一下,如果大于168MHz,就延长为FLASH_LATENCY_7

    // 配置 PLLRCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 6;       // HSE 分频系数RCC_OscInitStruct.PLL.PLLN = plln;    // PLL 倍频系数RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; // PLLP 分频系数RCC_OscInitStruct.PLL.PLLQ = 4;       // PLLQ 分频系数if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}// 配置系统时钟RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;// 设置 Flash 等待周期uint32_t flash_latency = (plln <= 168) ? FLASH_LATENCY_5 : FLASH_LATENCY_7;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, flash_latency) != HAL_OK){Error_Handler();}

最后是切换为PLL,并重新启用全局中断

    // 切换到 PLLSystemClock_SwitchToPLL();// 重新启用全局中断__enable_irq();

        完整代码如下,再次提醒,此代码是以外部晶振为12MHz的前提下有STM32CubeMX生成的,使用时需根据自身情况修改

/*** @brief 设置系统时钟频率* @param plln 锁相环倍频* @details 基于外部晶振为12MHz的配置*/
void SystemClock_SetFrequency(uint32_t plln)
{// 禁用全局中断__disable_irq();// 切换到 HSISystemClock_SwitchToHSI();// 禁用 PLL__HAL_RCC_PLL_DISABLE();// 配置 PLLRCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLM = 6;       // HSE 分频系数RCC_OscInitStruct.PLL.PLLN = plln;    // PLL 倍频系数RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; // PLLP 分频系数RCC_OscInitStruct.PLL.PLLQ = 4;       // PLLQ 分频系数if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}// 配置系统时钟RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;// 设置 Flash 等待周期uint32_t flash_latency = (plln <= 168) ? FLASH_LATENCY_5 : FLASH_LATENCY_7;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, flash_latency) != HAL_OK){Error_Handler();}// 切换到 PLLSystemClock_SwitchToPLL();// 重新启用全局中断__enable_irq();
}

        此时可另写两个函数,其一为默认配置,以便能从超频状态返回标准状态;其二为超频状态,建议不要设太高,推荐200~216MHz。提高主频后,也会提高其他时钟线,进而会对外设产生影响。此时需要注意一些如USB、以太网等对频率要求很高的外设,需要重新设置参数。

/*** @brief  超频* @param  无* @retval 无* @details 通过超频可以提升至 200MHz~216MHz,这里默认使用216MHz*/void SystemClock_Overclock()
{SystemClock_SetFrequency(216);
}
/*** @brief 默认系统时钟初始化* @details 最高稳定频率为168MHz*/
void SystemClock_DefaultConfig()
{SystemClock_SetFrequency(168);
}

        HAL中,对定时器的频率设置是依赖于全局变量SystemCoreClock,由HAL_RCC_ClockConfig来更新,使用HAL_RCC_GetPCLK1Freq等函数可以实现自动纠正频率,下面代码可以作为参考

#include "stm32f4xx_hal.h"/*** @brief  设置定时器频率* @param  htim: 定时器句柄(如 &htim2)* @param  target_freq: 目标频率(单位:Hz)* @retval HAL_StatusTypeDef: 成功返回 HAL_OK,失败返回 HAL_ERROR*/
HAL_StatusTypeDef Timer_SetFrequency(TIM_HandleTypeDef *htim, uint32_t target_freq)
{uint32_t timer_clock_freq; // 定时器时钟源频率uint32_t psc_value;        // 预分频器值// 获取 APB 总线时钟频率if (htim->Instance == TIM2 || htim->Instance == TIM3 || htim->Instance == TIM4 || htim->Instance == TIM5 ||htim->Instance == TIM9 || htim->Instance == TIM10 || htim->Instance == TIM11){// APB1 定时器timer_clock_freq = HAL_RCC_GetPCLK1Freq();if (RCC->CFGR & RCC_CFGR_PPRE1_2) // 检查 APB1 预分频器{timer_clock_freq *= 2; // 如果预分频器不为 1,时钟频率乘以 2}}else{// APB2 定时器timer_clock_freq = HAL_RCC_GetPCLK2Freq();if (RCC->CFGR & RCC_CFGR_PPRE2_2) // 检查 APB2 预分频器{timer_clock_freq *= 2; // 如果预分频器不为 1,时钟频率乘以 2}}// 检查目标频率是否有效if (target_freq == 0 || target_freq > timer_clock_freq){return HAL_ERROR; // 目标频率无效}// 计算预分频器值psc_value = (timer_clock_freq / target_freq) - 1;// 检查预分频器值是否超出范围if (psc_value > 0xFFFF){return HAL_ERROR; // 预分频器值超出 16 位范围}// 设置定时器预分频器__HAL_TIM_SET_PRESCALER(htim, psc_value);return HAL_OK;
}

其参考的是STM32CubeMX生成的“系统”定时器(这里使用的是TIM7)的初始化代码

/*用于配置供HAL使用基础时钟,频率为1KHz*/
HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{RCC_ClkInitTypeDef clkconfig;uint32_t uwTimclock, uwAPB1Prescaler = 0U;uint32_t uwPrescalerValue = 0U;uint32_t pFLatency;HAL_StatusTypeDef status;/* Enable TIM7 clock */__HAL_RCC_TIM7_CLK_ENABLE();/* Get clock configuration */HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);/* Get APB1 prescaler */uwAPB1Prescaler = clkconfig.APB1CLKDivider;/* Compute TIM7 clock */if (uwAPB1Prescaler == RCC_HCLK_DIV1){uwTimclock = HAL_RCC_GetPCLK1Freq();} else{uwTimclock = 2UL * HAL_RCC_GetPCLK1Freq();}/* Compute the prescaler value to have TIM7 counter clock equal to 1MHz */uwPrescalerValue = (uint32_t) ((uwTimclock / 1000000U) - 1U);/* Initialize TIM7 */htim7.Instance = TIM7;/* Initialize TIMx peripheral as follow:+ Period = [(TIM7CLK/1000) - 1]. to have a (1/1000) s time base.+ Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.+ ClockDivision = 0+ Counter direction = Up*/htim7.Init.Period = (1000000U / 1000U) - 1U;htim7.Init.Prescaler = uwPrescalerValue;htim7.Init.ClockDivision = 0;htim7.Init.CounterMode = TIM_COUNTERMODE_UP;htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
// 考虑到LVGL初始化会死循环status = HAL_TIM_Base_Init(&htim7);if (status == HAL_OK){/* Start the TIM time Base generation in interrupt mode */status = HAL_TIM_Base_Start_IT(&htim7);if (status == HAL_OK){/* Enable the TIM7 global Interrupt */HAL_NVIC_EnableIRQ(TIM7_IRQn);/* Configure the SysTick IRQ priority */if (TickPriority < (1UL << __NVIC_PRIO_BITS)){/* Configure the TIM IRQ priority */HAL_NVIC_SetPriority(TIM7_IRQn, TickPriority, 0U);uwTickPrio = TickPriority;} else{status = HAL_ERROR;}}}/* Return function status */return status;
}

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com