机器学习和深度学习通常都可以互换使用。它们都是是人工智能的子领域。更确切地说,神经网络是机器学习的子领域,深度学习是神经网络的子领域。
深度学习与机器学习不同之处在于每个算法的学习方式。深度机器学习可以用被标记了的数据集通知它的算法,也可以用未标记的数据集通知它的算法。用标记了的数据集训练叫监督学习,使用未标记的数据集训练叫无监督学习。深度学习过程可以处理非结构数据,如文本、图片。深度学习可以自动决定特征集, 这一点排除了必要的人为干预,使其能够应用到更加庞大数据量的数据集上,从这一点上来说,深度学习就是大规模的机器学习。所谓特征就是能够用于区分不同数据分类之间的值,如长、宽、高、颜色等等。
经典的机器学习更多需要依赖人为的干预。为什么这么说呢?因为需要专家来决定特征集和理解数据,通常需要非常多的结构化数据。
神经网络,又叫人工神经网络(artificial neural networks, ANNs)由节点层组成。这些节点层包括一个输入层、一到多个隐藏层、一个输出层。每一个节点(人工神经元)连接到另一个神经元,并且有一个关联的权重和阈值。如果一个神经元的输出高于指定的阈值,那么这个神经元就会被激活,并将数据发送到网络的下一层,否则这个神经元就不会发送任何数据到网络的下一层。深度学习的深度指的就是一个神经网络的层数。一个由超过三层包括输入、输出层的神经网络就是一个深度神经网络。如果只有三层,那么它就是一个基本神经网络。
深度学习和神经网络非常有效地加速了计算机视觉、自然语言、语言识别的处理。