您的位置:首页 > 娱乐 > 八卦 > 亚马逊网络营销方式_全屋定制效果图_seo和sem的关系_深圳网络营销外包公司推荐

亚马逊网络营销方式_全屋定制效果图_seo和sem的关系_深圳网络营销外包公司推荐

2024/12/23 10:12:14 来源:https://blog.csdn.net/u011564831/article/details/144394702  浏览:    关键词:亚马逊网络营销方式_全屋定制效果图_seo和sem的关系_深圳网络营销外包公司推荐
亚马逊网络营销方式_全屋定制效果图_seo和sem的关系_深圳网络营销外包公司推荐

lite-mono 使用工业数据集kitti 进行训练,目的使用单目摄像头实现物体深度预测,关于kitti数据集的介绍和下载参考


(二)一文带你了解KITTI数据集-CSDN博客文章浏览阅读2.7w次,点赞64次,收藏294次。文章介绍了KITTI数据集的起源、组成、传感器配置和数据结构,包括图像、点云、相机校准和物体标签的详细信息。此外,还阐述了数据预处理步骤、数据集的组织结构和文件解析,以及用于3D目标检测的评价指标。该数据集对于开发和评估自动驾驶场景中的计算机视觉算法至关重要。https://blog.csdn.net/m0_46556474/article/details/130944612

另一篇介绍lite-mono的帖子可以提前看看

CVPR‘2023 | Lite-Mono: 一种新的轻量级自监督单目深度估计方法_litemono内容-CSDN博客文章浏览阅读842次。本文提出了一种新的轻量级单目自监督单目深度估计方法。设计了一种混合的CNN和Transformer架构来建模多尺度增强的局部特征和全局上下文信息。在8个KITTI数据集上的实验结果证明了该方法的优越性。通过在提出的CDC块中设置优化的扩张率,并插入LGFI模块来获得局部-全局特征相关性,Lite-Mono可以感知不同尺度的物体,甚至是对靠近摄像机的移动物体。论文还验证了该模型在Make3D数据集上的泛化能力。此外,Lite-Mono在模型复杂性和推理速度之间实现了良好的权衡。_litemono内容https://blog.csdn.net/CVHub/article/details/130236211

本文主要尝试把模型转化为onnx,  再利用这个单眼深度估计模型Lite-Mono进行推理

权重的下载

wget -O weights/lite-mono_640x192.zip 'https://surfdrive.surf.nl/files/index.php/s/CUjiK221EFLyXDY/download'wget -O weights/lite-mono-small_640x192.zip 'https://surfdrive.surf.nl/files/index.php/s/8cuZNH1CkNtQwxQ/download'wget -O weights/lite-mono-tiny_640x192.zip 'https://surfdrive.surf.nl/files/index.php/s/TFDlF3wYQy0Nhmg/download'wget -O weights/lite-mono-8m_640x192.zip 'https://surfdrive.surf.nl/files/index.php/s/UlkVBi1p99NFWWI/download'wget -O weights/lite-mono_1024x320.zip 'https://surfdrive.surf.nl/files/index.php/s/IK3VtPj6b5FkVnl/download'wget -O weights/lite-mono-small_1024x320.zip 'https://surfdrive.surf.nl/files/index.php/s/w8mvJMkB1dP15pu/download'wget -O weights/lite-mono-tiny_1024x320.zip 'https://surfdrive.surf.nl/files/index.php/s/myxcplTciOkgu5w/download'wget -O weights/lite-mono-8m_1024x320.zip 'https://surfdrive.surf.nl/files/index.php/s/mgonNFAvoEJmMas/download'

解压

unzip weights/lite-mono_640x192.zip -d weights
unzip weights/lite-mono-small_640x192.zip -d weights
unzip weights/lite-mono-tiny_640x192.zip -d weights
unzip weights/lite-mono-8m_640x192.zip -d weightsunzip weights/lite-mono_1024x320.zip -d weights
unzip weights/lite-mono-small_1024x320.zip -d weights
unzip weights/lite-mono-tiny_1024x320.zip -d weights
unzip weights/lite-mono-8m_1024x320.zip -d weights

Lite-Mono 模型加载

import osimport torch
from torchvision import transforms, datasetsimport networksdef load_network(model='lite-mono', load_weights_folder=None, device='cuda'):device = torch.device('cuda')encoder_path = os.path.join(load_weights_folder, 'encoder.pth')decoder_path = os.path.join(load_weights_folder, 'depth.pth')encoder_dict = torch.load(encoder_path)decoder_dict = torch.load(decoder_path)feed_height = encoder_dict['height']feed_width = encoder_dict['width']encoder = networks.LiteMono(model=model,height=feed_height,width=feed_width,)model_dict = encoder.state_dict()encoder.load_state_dict({k: vfor k, v in encoder_dict.items() if k in model_dict})encoder.to(device)encoder.eval()depth_decoder = networks.DepthDecoder(encoder.num_ch_enc, scales=range(3))depth_model_dict = depth_decoder.state_dict()depth_decoder.load_state_dict({k: vfor k, v in decoder_dict.items() if k in depth_model_dict})depth_decoder.to(device)depth_decoder.eval()return encoder, depth_decoder

ONNX 模型变换方法

def convert_to_onnx(input_shape=(640, 192), output_dir='',encoder=None, decoder=None, device='cpu',
):os.makedirs(output_dir, exist_ok=True)# encoderinput_image = torch.randn(1, 3, input_shape[1], input_shape[0]).to(device)input_layer_names = ['input_image']output_layer_names = ['features']torch.onnx.export(encoder, input_image,file_name + '/encoder.onnx', verbose=True,input_names=input_layer_names,output_names=output_layer_names,do_constant_folding=False,opset_version=13,)# decoderencoder_results = encoder(input_image)features = []features.append(torch.randn(*list(encoder_results[0].shape)).to(device))features.append(torch.randn(*list(encoder_results[1].shape)).to(device))features.append(torch.randn(*list(encoder_results[2].shape)).to(device))input_layer_names = ['features_1', 'features_2', 'features_3']output_layer_names = ['depth']torch.onnx.export(decoder, features,file_name + '/decoder.onnx', verbose=True,input_names=input_layer_names,output_names=output_layer_names,do_constant_folding=False,opset_version=13,)

onnx格式变换

file_name = 'lite-mono_640x192'
input_shape = (640, 192)
model='lite-mono'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)file_name = 'lite-mono-small_640x192'
input_shape = (640, 192)
model='lite-mono-small'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)file_name = 'lite-mono-tiny_640x192'
input_shape = (640, 192)
model='lite-mono-tiny'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)file_name = 'lite-mono-8m_640x192'
input_shape = (640, 192)
model='lite-mono-8m'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)file_name = 'lite-mono_1024x320'
input_shape = (1024, 320)
model='lite-mono'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)file_name = 'lite-mono-small_1024x320'
input_shape = (1024, 320)
model='lite-mono-small'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)file_name = 'lite-mono-tiny_1024x320'
input_shape = (1024, 320)
model='lite-mono-tiny'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)file_name = 'lite-mono-8m_1024x320'
input_shape = (1024, 320)
model='lite-mono-8m'load_weights_folder = 'weights/' + file_name
encoder, decoder = load_network(model, load_weights_folder)convert_to_onnx(input_shape=input_shape, output_dir=file_name, encoder=encoder, decoder=decoder, device='cuda:0',
)

使用onnx进行推理

  • 视频捕获:首先初始化视频捕获设备。
  • 模型加载:加载编码器和解码器的 ONNX 模型。
  • 主循环:在无限循环中读取视频帧,进行推理,处理输出图像,直到按下 ESC 键。
  • 资源释放:在结束时释放视频捕获资源并关闭所有窗口。

需要以下库

os:用于文件和路径操作。
copy:用于深拷贝对象。
time:用于时间测量。
argparse:用于处理命令行参数。
cv2:OpenCV库,用于图像处理。
numpy:用于处理数组和矩阵。
onnxruntime:用于运行 ONNX 模型。

def run_inference(encoder, decoder, image):

  • 输入:编码器和解码器模型,以及输入图像。
  • 处理
    • 预处理:调整图像大小、颜色空间转换、转置和归一化。
    • 推理:将处理后的图像输入编码器和解码器,生成深度图。
    • 后处理:归一化深度图并转换为 uint8 格式。

def main():

  • 解析命令行参数:包括设备编号、视频文件路径和模型路径。
  • 视频捕获:使用 OpenCV 从指定设备或视频文件读取帧。
  • 加载模型:使用 ONNX Runtime 加载编码器和解码器模型。
  • 循环处理
    • 捕获视频帧,进行深度推理,并绘制调试信息。
    • 显示输入和输出图像。

def draw_debug(image, elapsed_time, depth_map):

  • 输入:原始图像、推理耗时和深度图。
  • 处理
    • 使用 cv.applyColorMap 为深度图应用色彩映射。
    • 在调试图像上显示推理耗时。

完整代码如下

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import copy
import time
import argparseimport cv2 as cv
import numpy as np
import onnxruntimedef run_inference(encoder, decoder, image):# ONNX Input Sizeinput_size = encoder.get_inputs()[0].shapeinput_width = input_size[3]input_height = input_size[2]# Pre process:Resize, BGR->RGB, Transpose, float32 castinput_image = cv.resize(image, dsize=(input_width, input_height))input_image = cv.cvtColor(input_image, cv.COLOR_BGR2RGB)input_image = input_image.transpose(2, 0, 1)input_image = np.expand_dims(input_image, axis=0)input_image = input_image.astype('float32')input_image = input_image / 255.0# Inferenceinput_name = encoder.get_inputs()[0].namefeatures = encoder.run(None, {input_name: input_image})input_name_01 = decoder.get_inputs()[0].nameinput_name_02 = decoder.get_inputs()[1].nameinput_name_03 = decoder.get_inputs()[2].namedepth_map = decoder.run(None,{input_name_01: features[0],input_name_02: features[1],input_name_03: features[2]},)# Post processdepth_map = np.squeeze(depth_map[0])d_min = np.min(depth_map)d_max = np.max(depth_map)depth_map = (depth_map - d_min) / (d_max - d_min)depth_map = depth_map * 255.0depth_map = np.asarray(depth_map, dtype="uint8")return depth_mapdef main():parser = argparse.ArgumentParser()parser.add_argument("--device", type=int, default=0)parser.add_argument("--movie", type=str, default=None)parser.add_argument("--model",type=str,default='model/lite-mono-tiny_640x192',)args = parser.parse_args()model_dir = args.modelencoder_path = os.path.join(model_dir, 'encoder.onnx')decoder_path = os.path.join(model_dir, 'decoder.onnx')# Initialize video capturecap_device = args.deviceif args.movie is not None:cap_device = args.moviecap = cv.VideoCapture(cap_device)# Load modelencoder = onnxruntime.InferenceSession(encoder_path,providers=['CUDAExecutionProvider','CPUExecutionProvider',],)decoder = onnxruntime.InferenceSession(decoder_path,providers=['CUDAExecutionProvider','CPUExecutionProvider',],)while True:start_time = time.time()# Capture readret, frame = cap.read()if not ret:breakdebug_image = copy.deepcopy(frame)# Inference executiondepth_map = run_inference(encoder,decoder,frame,)elapsed_time = time.time() - start_time# Drawdebug_image, depth_image = draw_debug(debug_image,elapsed_time,depth_map,)key = cv.waitKey(1)if key == 27:  # ESCbreakcv.imshow('Input', debug_image)cv.imshow('Output', depth_image)cap.release()cv.destroyAllWindows()def draw_debug(image, elapsed_time, depth_map):image_width, image_height = image.shape[1], image.shape[0]debug_image = copy.deepcopy(image)# Apply ColorMapdepth_image = cv.applyColorMap(depth_map, cv.COLORMAP_JET)depth_image = cv.resize(depth_image, dsize=(image_width, image_height))# Inference elapsed timecv.putText(debug_image,"Elapsed Time : " + '{:.1f}'.format(elapsed_time * 1000) + "ms",(10, 40), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2,cv.LINE_AA)return debug_image, depth_image

window下启动测试main会有报错

cv2.error: OpenCV(4.10.0) D:\a\opencv-python\opencv-python\opencv\modules\highgui\src\window.cpp:1301: error: (-2:Unspecified error) The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script in function 'cvShowImage'

解决方法参考

https://stackoverflow.com/questions/67120450/error-2unspecified-error-the-function-is-not-implemented-rebuild-the-libraicon-default.png?t=O83Ahttps://stackoverflow.com/questions/67120450/error-2unspecified-error-the-function-is-not-implemented-rebuild-the-libra

安装下面模块

pip install opencv-contrib-python 

使用一个行车记录仪视频进行测试

2905c3d871374931af52209aecc7b83d.gif

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com