您的位置:首页 > 教育 > 锐评 > vi设计案例ppt_济南网络公司排行榜_网站模板源码_苏州seo网站优化软件

vi设计案例ppt_济南网络公司排行榜_网站模板源码_苏州seo网站优化软件

2025/2/23 5:39:19 来源:https://blog.csdn.net/u013343616/article/details/142935444  浏览:    关键词:vi设计案例ppt_济南网络公司排行榜_网站模板源码_苏州seo网站优化软件
vi设计案例ppt_济南网络公司排行榜_网站模板源码_苏州seo网站优化软件

大语言模型生成中的“幻觉率”问题,指的是模型生成的内容不准确或虚构的情况。幻觉率过高会导致错误信息的传播,特别是在一些需要高度准确性的任务中,例如法律、医学等领域。

RAG

检索增强生成(Retrieval-Augmented Generation,RAG):将语言模型与检索系统结合,让模型在生成之前先检索相关的事实数据,从而增强生成的准确性。

RLHF

基于人类反馈的强化学习(Reinforcement Learning with Human Feedback,RLHF):通过人类标注者对模型输出的评估与反馈,模型可以学会减少不准确或虚构的生成内容。例如,OpenAI 的 GPT 模型通过这个方法显著降低幻觉率。

有监督微调:将模型与已知正确的答案进行有监督微调,特别是在关键领域,这有助于模型学会生成更为准确的结果。

其它

  1. 数据质量控制
  2. 使用多领域的高质量数据
  3. 事实验证和查询检索
  4. 显性推理链
  5. 明确模型限制
  6. 使用更小、更专精的子模型
  7. 增强对外部知识的使用
  8. 生成内容的可解释性
  9. 使用引用和来源
  10. 数据多样化

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com