您的位置:首页 > 教育 > 锐评 > 深圳黄页企业名录_生日网页制作教程_焦作seo推广_职业培训网

深圳黄页企业名录_生日网页制作教程_焦作seo推广_职业培训网

2025/4/18 12:01:44 来源:https://blog.csdn.net/qq_30204431/article/details/142688897  浏览:    关键词:深圳黄页企业名录_生日网页制作教程_焦作seo推广_职业培训网
深圳黄页企业名录_生日网页制作教程_焦作seo推广_职业培训网

4. 微分

4.3 导数四则运算与反函数求导法则

双曲正弦函数 sh ⁡ x = e x − e − x 2 \sh x=\frac{e^x-e^{-x}}{2} shx=2exex
双曲余弦函数 ch ⁡ x = e x + e − x 2 \ch x=\frac{e^x+e^{-x}}{2} chx=2ex+ex
ch ⁡ 2 x − sh ⁡ 2 x = 1 \ch^2 x-\sh^2 x=1 ch2xsh2x=1
( e − x ) ′ = ( 1 e x ) ′ = − e x e 2 x = − e − x (e^{-x})'=(\frac{1}{e^x})'=-\frac{e^x}{e^{2x}}=-e^{-x} (ex)=(ex1)=e2xex=ex
( sh ⁡ x ) ′ = 1 2 ( e x + e − x = ch ⁡ x ) (\sh x)'=\frac{1}{2}(e^x+e^{-x}=\ch x) (shx)=21(ex+ex=chx)
同理 ( ch ⁡ x ) ′ = sh ⁡ x (\ch x)' = \sh x (chx)=shx
双曲正切函数 th ⁡ x = sh ⁡ x ch ⁡ x \th x=\frac{\sh x}{\ch x} thx=chxshx
双曲余切函数 cth ⁡ x = ch ⁡ x sh ⁡ x \cth x=\frac{\ch x}{\sh x} cthx=shxchx
( th ⁡ x ) ′ = ch ⁡ 2 x − sh ⁡ 2 x ch ⁡ 2 x = 1 ch ⁡ 2 x = sech 2 x (\th x)'=\frac{\ch^2 x-\sh^2 x}{\ch^2 x}=\frac{1}{\ch^2 x}=\text{sech}^2 x (thx)=ch2xch2xsh2x=ch2x1=sech2x
同理 ( cth ⁡ x ) ′ = csch 2 x (\cth x)'=\text{csch}^2 x (cthx)=csch2x
( sh ⁡ − 1 x ) = 1 ( sh ⁡ y ) ′ = 1 ch ⁡ y = 1 1 + sh ⁡ 2 y = 1 1 + x 2 (\sh^{-1} x)=\frac{1}{(\sh y)'}=\frac{1}{\ch y}=\frac{1}{\sqrt{1+\sh ^2 y}}=\frac{1}{\sqrt{1+x^2}} (sh1x)=(shy)1=chy1=1+sh2y 1=1+x2 1
同理 ( ch ⁡ − 1 x ) ′ = 1 x 2 − 1 (\ch^{-1} x)'=\frac{1}{\sqrt{x^2-1}} (ch1x)=x21 1
( th ⁡ − 1 x ) ′ = ( cth ⁡ − 1 x ) = 1 1 − x 2 (\th^{-1} x)'=(\cth^{-1} x)=\frac{1}{1-x^2} (th1x)=(cth1x)=1x21

4.3.3 基本初等函数的导数公式

( C ) ′ = 0 d ( C ) = 0 ⋅ d x = 0 ( x α ) ′ = α x α − 1 d ( x α ) = α x α − 1 d x ( sin ⁡ x ) ′ = cos ⁡ x d ( sin ⁡ x ) = cos ⁡ x d x ( cos ⁡ x ) ′ = − sin ⁡ x d ( cos ⁡ x ) = − sin ⁡ x d x ( tan ⁡ x ) ′ = sec ⁡ 2 x d ( tan ⁡ x ) = sec ⁡ 2 x d x ( cot ⁡ x ) ′ = − csc ⁡ 2 x d ( cot ⁡ x ) = − csc ⁡ 2 x d x ( sec ⁡ x ) ′ = tan ⁡ x sec ⁡ x d ( sec ⁡ x ) = tan ⁡ x sec ⁡ x d x ( csc ⁡ x ) ′ = − cot ⁡ x csc ⁡ x d ( csc ⁡ x ) = − cot ⁡ x csc ⁡ x d x ( arcsin ⁡ x ) ′ = 1 1 − x 2 d ( arcsin ⁡ x ) = d x 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 d ( arccos ⁡ x ) = − d x 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( arccot ⁡ x ) ′ = − 1 1 + x 2 ( a x ) ′ = ln ⁡ a ⋅ a x 特别地  ( e x ) ′ = e x ( log ⁡ a x ) ′ = 1 ln ⁡ a ⋅ 1 x 特别地  ( ln ⁡ x ) ′ = 1 x ( sh ⁡ x ) ′ = ch ⁡ x ( ch ⁡ x ) ′ = sh ⁡ x ( th  x ) ′ = sech ⁡ 2 x ( cth ⁡ x ) ′ = − csch ⁡ 2 x ( sh ⁡ − 1 x ) ′ = 1 1 + x 2 ( ch ⁡ − 1 x ) ′ = 1 x 2 − 1 d ( arctan ⁡ x ) = d x 1 + x 2 ( th ⁡ − 1 x ) ′ = ( cth ⁡ − 1 x ) ′ = 1 1 − x 2 d ( arccot ⁡ x ) = − d x 1 + x 2 d ( a x ) = ln ⁡ a ⋅ a x d x 特别地  d ( e x ) = e x d x d ( log ⁡ a x ) = 1 ln ⁡ a ⋅ d x x 特别地  d ( ln ⁡ x ) = d x x d ( sh ⁡ x ) = ch ⁡ x d x d ( ch ⁡ x ) = sh ⁡ x d x d ( th  x ) = sech ⁡ 2 x d x d ( cth ⁡ x ) = − csch ⁡ 2 x d x d ( sh ⁡ − 1 x ) = d x 1 + x 2 d ( ch ⁡ − 1 x ) = d x x 2 − 1 d ( th ⁡ − 1 x ) = d ( cth ⁡ − 1 x ) = d x 1 − x 2 \begin{array}{l} (C)^{\prime}=0 \\ \mathrm{~d}(C)=0 \cdot \mathrm{~d} x=0 \\ \left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1} \\ \mathrm{~d}\left(x^{\alpha}\right)=\alpha x^{\alpha-1} \mathrm{~d} x \\ (\sin x)^{\prime}=\cos x \\ \mathrm{~d}(\sin x)=\cos x \mathrm{~d} x \\ (\cos x)^{\prime}=-\sin x \\ \mathrm{~d}(\cos x)=-\sin x \mathrm{~d} x \\ (\tan x)^{\prime}=\sec ^{2} x \\ \mathrm{~d}(\tan x)=\sec ^{2} x \mathrm{~d} x \\ (\cot x)^{\prime}=-\csc ^{2} x \\ \mathrm{~d}(\cot x)=-\csc ^{2} x \mathrm{~d} x \\ (\sec x)^{\prime}=\tan x \sec x \\ \mathrm{~d}(\sec x)=\tan x \sec x \mathrm{~d} x \\ (\csc x)^{\prime}=-\cot x \csc x \\ \mathrm{~d}(\csc x)=-\cot x \csc x \mathrm{~d} x \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \\ \mathrm{~d}(\arcsin x)=\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad \mathrm{~d}(\arccos x)=-\frac{\mathrm{d} x}{\sqrt{1-x^{2}}} \\ (\arctan x)^{\prime}=\frac{1}{1+x^{2}} \\ (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \\ \left(a^{x}\right)^{\prime}=\ln a \cdot a^{x} \\ \text { 特别地 }\left(e^{x}\right)^{\prime}=e^{x} \\ \left(\log _{a} x\right)^{\prime}=\frac{1}{\ln a} \cdot \frac{1}{x} \\ \text { 特别地 }(\ln x)^{\prime}=\frac{1}{x} \\ (\operatorname{sh} x)^{\prime}=\operatorname{ch} x \\ (\operatorname{ch} x)^{\prime}=\operatorname{sh} x \\ (\text { th } x)^{\prime}=\operatorname{sech}^{2} x \\ (\operatorname{cth} x)^{\prime}=-\operatorname{csch}^{2} x \\ \left(\operatorname{sh}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1+x^{2}}} \\ \left(\operatorname{ch}^{-1} x\right)^{\prime}=\frac{1}{\sqrt{x^{2}-1}} \\ \mathrm{~d}(\arctan x)=\frac{\mathrm{d} x}{1+x^{2}} \\ \left(\operatorname{th}^{-1} x\right)^{\prime}=\left(\operatorname{cth}^{-1} x\right)^{\prime}=\frac{1}{1-x^{2}} \\ \mathrm{~d}(\operatorname{arccot} x)=-\frac{\mathrm{d} x}{1+x^{2}} \\ \mathrm{~d}\left(a^{x}\right)=\ln a \cdot a^{x} \mathrm{~d} x \\ \text { 特别地 } d\left(e^{x}\right)=e^{x} d x \\ \mathrm{~d}\left(\log _{a} x\right)=\frac{1}{\ln a} \cdot \frac{\mathrm{~d} x}{x} \\ \text { 特别地 } \mathrm{d}(\ln x)=\frac{\mathrm{d} x}{x} \\ \mathrm{~d}(\operatorname{sh} x)=\operatorname{ch} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{ch} x)=\operatorname{sh} x \mathrm{~d} x \\ \mathrm{~d}(\text { th } x)=\operatorname{sech}^{2} x \mathrm{~d} x \\ \mathrm{~d}(\operatorname{cth} x)=-\operatorname{csch}^{2} x \mathrm{~d} x \\ \mathrm{~d}\left(\operatorname{sh}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{1+x^{2}}} \\ \mathrm{~d}\left(\operatorname{ch}^{-1} x\right)=\frac{\mathrm{d} x}{\sqrt{x^{2}-1}} \\ \mathrm{~d}\left(\operatorname{th}^{-1} x\right)=\mathrm{d}\left(\operatorname{cth}^{-1} x\right)=\frac{\mathrm{d} x}{1-x^{2}} \end{array} (C)=0 d(C)=0 dx=0(xα)=αxα1 d(xα)=αxα1 dx(sinx)=cosx d(sinx)=cosx dx(cosx)=sinx d(cosx)=sinx dx(tanx)=sec2x d(tanx)=sec2x dx(cotx)=csc2x d(cotx)=csc2x dx(secx)=tanxsecx d(secx)=tanxsecx dx(cscx)=cotxcscx d(cscx)=cotxcscx dx(arcsinx)=1x2 1 d(arcsinx)=1x2 dx(arccosx)=1x2 1 d(arccosx)=1x2 dx(arctanx)=1+x21(arccotx)=1+x21(ax)=lnaax 特别地 (ex)=ex(logax)=lna1x1 特别地 (lnx)=x1(shx)=chx(chx)=shx( th x)=sech2x(cthx)=csch2x(sh1x)=1+x2 1(ch1x)=x21 1 d(arctanx)=1+x2dx(th1x)=(cth1x)=1x21 d(arccotx)=1+x2dx d(ax)=lnaax dx 特别地 d(ex)=exdx d(logax)=lna1x dx 特别地 d(lnx)=xdx d(shx)=chx dx d(chx)=shx dx d( th x)=sech2x dx d(cthx)=csch2x dx d(sh1x)=1+x2 dx d(ch1x)=x21 dx d(th1x)=d(cth1x)=1x2dx
【注】(1) [ ∑ i = 1 n c i f i ( x ) ] ′ = ∑ i = 1 n c i f ′ i ( x ) \left[\sum\limits_{i=1}^{n} c_{i} f_{i}(x)\right]^{\prime}=\sum\limits_{i=1}^{n} c_{i} f^{\prime}{ }_{i}(x) [i=1ncifi(x)]=i=1ncifi(x),其中 c i ( i = 1 , 2 , ⋯ , n ) c_{i}(i=1,2, \cdots, n) ci(i=1,2,,n)为常数;
(2) [ ∏ i = 1 n f i ( x ) ] ′ = ∑ j = 1 n { f j ′ ( x ) ∏ i = 1 , i ≠ j n f i ( x ) } \left[\prod\limits_{i=1}^{n} f_{i}(x)\right]^{\prime}=\sum\limits_{j=1}^{n}\left\{f^{\prime}_{j}(x) \prod\limits_{i=1,i\ne j}^{n} f_{i}(x)\right\} [i=1nfi(x)]=j=1n{fj(x)i=1,i=jnfi(x)}(每一项是有一个因式的函数求导,其他不求导,然后相乘)


【例4.3.12】 y = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 y=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0 y=anxn+an1xn1+...+a1x+a0,求 y ′ y' y.
【解】 y ′ = n a n x n − 1 + ( n − 1 ) a n − 1 x n − 2 + . . . + a 1 y' = na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+a_1 y=nanxn1+(n1)an1xn2+...+a1


【例4.3.13】 y = e x ( x 2 + 3 x − 1 ) arcsin ⁡ x y=e^x(x^2+3x-1)\arcsin x y=ex(x2+3x1)arcsinx,求 y ′ y' y.
【解】 y ′ = e x ( x 2 + 3 x − 1 ) arcsin ⁡ x + e x ( 2 x + 3 ) arcsin ⁡ x + e x ( x 2 + 3 x − 1 ) 1 1 − x 2 = e x ( ( x 2 + 5 x + 2 ) arcsin ⁡ x + x 2 + 3 x − 1 1 − x 2 ) y'=e^x(x^2+3x-1)\arcsin x+ e^x(2x+3)\arcsin x + e^x(x^2+3x-1)\frac{1}{\sqrt{1-x^2}}=e^x((x^2+5x+2)\arcsin x+\frac{x^2+3x-1}{\sqrt{1-x^2}}) y=ex(x2+3x1)arcsinx+ex(2x+3)arcsinx+ex(x2+3x1)1x2 1=ex((x2+5x+2)arcsinx+1x2 x2+3x1)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com