您的位置:首页 > 教育 > 锐评 > 【备战蓝桥杯】蓝桥杯省一笔记:算法模板笔记(Java)

【备战蓝桥杯】蓝桥杯省一笔记:算法模板笔记(Java)

2024/10/31 9:51:08 来源:https://blog.csdn.net/weixin_61370021/article/details/139299129  浏览:    关键词:【备战蓝桥杯】蓝桥杯省一笔记:算法模板笔记(Java)

蓝桥杯

      • 0、快读快写模板
      • 1、回文判定
      • 2、前缀和
      • 3、差分
      • 4、二分查找
      • 5、快速幂
      • 6、判断素数
      • 7、gcd&lcm
      • 8、进制转换
      • 9、位运算
      • 10、字符串常用API
      • 11、n的所有质因子
      • 12、n的质因子个数
      • 13、n的约数个数
      • 14、n阶乘的约数个数
      • 15、n的约数和
      • 16、阶乘 & 双阶乘
      • 17、自定义升序降序
      • 18、动态规划_01背包
      • 19、动态规划_多重背包
      • 20、动态规划_完全背包
      • 21、子串分值和
      • 22、埃氏筛法
      • 23、欧拉筛法
      • 24、欧拉函数
      • 25、欧拉求和
      • 26、区间素数筛
      • 27、桶排序
      • 28、费马小定理求逆元
      • 29、阶乘的约数和
      • 30、最小质因子之和(埃氏筛法)
      • 31、排列组合
      • 32、计算几何公式
      • 33、Floyd 多源最短路
      • 34、Dijkstra 单源最短路 可处理非负边权
      • 35、Kruskal 算法
      • 36、KMP 算法
      • 37、Prim 算法
      • 38、BellmanFord 算法
      • 39、LIS 最长公共子序列
      • 40、LCS最长上升子序列_朴素
      • 41、LCS最长上升子序列_二分
      • 42、Manacher 算法
      • 43、ST表_求区间最小值
      • 44、ST表_求区间最大值
      • 45、并查集

前言
第二次参加蓝桥杯,从C++组转Java组,分享一下平时备赛整理的模板笔记,如有错误,欢迎评论或者私聊
在这里插入图片描述

0、快读快写模板

import java.io.*;public class Main {static PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));static StreamTokenizer st = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));static BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));public static void main(String[] args) throws IOException{pw.flush();}public static String Line() throws IOException {String s = bf.readLine();return s;}public static int Int() throws IOException{st.nextToken();return (int)st.nval;}public static long Long() throws IOException{st.nextToken();return (long) st.nval;}public static double Double() throws IOException{st.nextToken();return st.nval;}
}
  • 数据输入达 1e5 需要用快读快写才能拿更多的分

1、回文判定

  • 回文数、回文字符串皆可用双指针进行判断
public static void main(String[] args) throws IOException{int n = Int();pw.println(hw(n));pw.flush();
}private static boolean hw(int n1) {String s = n1+"";int n = s.length()-1;for (int l = 0,r = n; l<r; l++,r--) {if (s.charAt(l)!=s.charAt(r))return false;}return true;
}

2、前缀和

  • 前缀和 sum[i] = sum[i-1] + a[i]
  • 区间前缀和 sum[r]-sum[l-1]
  • 作用:计算各个区间的和
public static void main(String[] args) throws IOException{int n = Int();int m = Int();int[] a = new int[n+1];int[] sum = new int[n+1];for (int i = 1; i <= n; i++) {a[i]=Int();sum[i]=sum[i-1]+a[i];}while (m-->0){int l = Int();int r = Int();pw.println(sum[r]-sum[l-1]);}pw.flush();
}

3、差分

  • 差分与前缀和互逆
  • 下标从0开始存储(输入左右边界需要减一)
  • 下标从1开始存储(输入左右边界不用减一)
  • 差分 b[i]=a[i]-a[i-1]
  • 区间加法 b[l]+=c b[r+1]-=c
  • 区间减法 b[l]-=c b[r+1]+=c
  • b[i]+=b[i-1] 还原差分数组
  • 作用:计算差分数组与原数组相加后的元素值
public static void main(String[] args) throws IOException{int n = Int();int[] a = new int[n+1];int m = Int();for (int i = 1; i <= n; i++) {  //数组从1开始存储a[i]=Int();}while (m-->0){int l = Int();  //左右边界输入不用减一int r = Int();int c = Int();b[l]+=c;b[r+1]-=c;}for (int i = 1; i <= n; i++) {  //前缀和还原差分数组b[i]+=b[i-1];}for (int i = 1; i <= n; i++) {long ans = a[i]+b[i];    //原数组与差分数组相加if (ans<0){pw.print(0+" ");}else {pw.print(ans+" ");}}pw.flush();
}

4、二分查找

  • 二分查找的序列必须是有序的
  • 下面有两种求法,适应不同的情况
  • ① 在单调递增序列a中查找>=x的数中最小的一个(即x或x的后继)
  • ② 在单调递增序列a中查找<=x的数中最大的一个(即x或x的前驱)
public static void main(String[] args) throws IOException{int x = Int();int[] a = {1,2,3,4,5,6,7,8};int l = 0;int r = a.length-1;// 在单调递增序列a中查找>=x的数中最小的一个(即x或x的后继)while (l<r){int mid = (l+r)/2;if (a[mid]>=x){r = mid;}else {l = mid + 1;}}System.out.println(r);// 在单调递增序列a中查找<=x的数中最大的一个(即x或x的前驱)while (l<r){int mid = (l+r+1)/2;if (a[mid]<=x){l = mid;}else {r = mid - 1;}}System.out.println(l);pw.flush();
}

5、快速幂

  • 求 (a 的 b次方)mod p
public static void main(String[] args) throws IOException{long a = Long();long b = Long();long p = Long();pw.println(qmi(a,b,p));pw.flush();
}private static long qmi(long a, long b, long p) {long res = 1;while (b>0){if ((b&1)==1){res=res*a%p;}a=a*a%p;b>>=1;}return res;
}

6、判断素数

  • 如果 n 小于2,不是素数。枚举2 - n/i , 如果 n%i==0 说明 n 不是素数。
public static void main(String[] args) throws IOException{int n = Int();pw.println(isprime(n));pw.flush();
}private static boolean isprime(int n) {if (n<2) return false;for (int i = 2; i <= n/i; i++) {if (n%i==0){return false;}}return true;
}

7、gcd&lcm

  • 最大公约数gcd、最小公倍数lcm
private static int lcm(int a, int b) {return a/gcd(a,b)*b;
}private static int gcd(int a, int b) {return b==0? a:gcd(b,a%b);
}

8、进制转换

在这里插入图片描述

9、位运算

在这里插入图片描述在这里插入图片描述在这里插入图片描述

10、字符串常用API

11、n的所有质因子

  • 求解n的质因子,枚举2 到 n/i,if ( n%i )==0, i 是质因子;

  • while ( n%i==0 ){
    n/=i;

    },则是去除质因子。枚举结束,如果 n>1,n也是质因子。

public static void main(String[] args) throws IOException{long n = Long();deal(n);pw.flush();
}private static void deal(long n) {for (int i = 2; i <= n/i; i++) {if (n%i==0){System.out.print(i+" ");}while (n%i==0){n/=i;}}if (n>1) System.out.print(n);
}

12、n的质因子个数

  • 求解n的质因子,枚举2 - n/i,if ( n%i )==0, 质因子个数++;
  • while ( n%i==0 ){
    n/=i;
    },则是去除质因子。枚举结束,如果 n>1,质因子个数++。
public static void main(String[] args) throws IOException{long n = Long();deal(n);pw.flush();
}private static void deal(long n) {int sum = 0;for (int i = 2; i <= n/i; i++) {if (n%i==0){sum++;}while (n%i==0){n/=i;}}if (n>1) sum++;System.out.println(sum);
}

13、n的约数个数

  • 求约数个数:即求(素因子1的指数+1)(素因子2的指数+1)*…(素因子n的指数+1)
public static void main(String[] args) throws IOException{int n = Int();int bak = n;int[] f = new int[n+1];for (int i = 2; i <= bak/i; i++) {if (bak%i==0){while (bak%i==0){f[i]++;bak/=i;}}}if (bak>1) f[bak]++;long ans = 1;for (int x : f){if (x > 0){ans=ans*(x+1);}}pw.println(ans);pw.flush();
}

14、n阶乘的约数个数

  • 求约数个数:即求(素因子1的指数+1)(素因子2的指数+1)…(素因子n的指数+1)
  • 求n阶乘的约数个数,即两次for循环即可解决。
public static void main(String[] args) throws IOException{int n = Int();int bak = 0;int[] f = new int[n+1];for (int i = 2; i <= n; i++) {bak = i;for (int j = 2; j <= bak/j; j++) {if (bak%j==0){while (bak%j==0){f[j]++;bak/=j;}}}if (bak>1) f[bak]++;}long ans = 1;for (int x : f){if (x > 0){ans = ans*(x+1);}}pw.println(ans);pw.flush();
}

15、n的约数和

  • 约数与因数是相同的概念,求n的约数,即求 1-n 能被 n 整除的数。
public static void main(String[] args) throws IOException{int n = Int();pw.println(deal(n));pw.flush();
}private static int deal(int n) {int sum = 0;for (int i = 1; i <= n; i++) {if (n%i==0){sum+=i;}}return sum;
}

16、阶乘 & 双阶乘

  • 求阶乘
  • 如果 n 小于等于0,返回1,否则返回 n*jc ( n-1 )
public static void main(String[] args) throws IOException{int n = Int();System.out.println(jc(n));pw.flush();
}private static long jc(int n) {if (n<=0) return 1;return n*jc(n-1);
}
  • 求双阶乘
  • 如果 n 小于等于0,返回1,否则返回 n*jc ( n-2 )
public static void main(String[] args) throws IOException{int n = Int();System.out.println(jc(n));pw.flush();
}private static long jc(int n) {if (n<=0) return 1;return n*jc(n-2);
}

17、自定义升序降序

  • 注意:自定义排序需要使用引用数据类型
public static void main(String[] args) throws IOException{int n = Int();Integer[] arr = new Integer[n];for (int i = 0; i < n; i++) {arr[i]=Int();}Arrays.sort(arr,(o1, o2) -> o2-o1);for (int x : arr){System.out.print(x+" ");}pw.flush();
}

18、动态规划_01背包

小明有一个容量为 V 的背包。

这天他去商场购物,商场一共有 N 件物品,第 i 件物品的体积为 wi,价值为 vi。

小明想知道在购买的物品总体积不超过 V 的情况下所能获得的最大价值为多少,请你帮他算算。

public static void main(String[] args) throws IOException {int n = Int();int m = Int();int[] W = new int[n + 1];int[] V = new int[n + 1];for (int i = 0; i < n; i++) {W[i] = Int();V[i] = Int();}int[][] dp = new int[n + 1][m + 1];for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (j >= W[i - 1]) {  //选第i件物品dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - W[i - 1]] + V[i - 1]);}dp[i][j] = Math.max(dp[i][j], dp[i - 1][j]);  //不选第i件物品}}pw.println(dp[n][m]);pw.flush();
}

19、动态规划_多重背包

  • 第 i 种物品的体积为 wi,价值为 vi,数量为 si。
public static void main(String[] args) throws IOException {int n = Int();int m = Int();int[] W = new int[n + 50];int[] V = new int[n + 50];int[] S = new int[n + 50];int[] dp = new int[n + 50];for (int i = 0; i < n; i++) {W[i] = Int();V[i] = Int();S[i] = Int();}Arrays.fill(dp,0);for (int i = 0; i < n; i++) {  //遍历每一个物品for (int j = m; j >= W[i]; j--) {for (int k = 1; k <= S[i] && j>=k*W[i]; k++) {dp[j]=Math.max(dp[j],dp[j-k*W[i]]+V[i]*k);}}}pw.println(dp[m]);pw.println();pw.flush();
}

20、动态规划_完全背包

  • 每种物品都有无限多个
public static void main(String[] args) throws IOException {int n = Int();int m = Int();int[] w = new int[n];int[] v = new int[n];for (int i = 0; i < n; i++) {w[i]=Int();v[i]=Int();}int[] dp = new int[m+1];for (int i = 0; i < n; i++) {for (int j = w[i]; j <= m; j++) {dp[j]=Math.max(dp[j],dp[j-w[i]]+v[i]);}}pw.println(dp[m]);pw.flush();
}

21、子串分值和

  • 统计所有子串不重复的字符个数
public static void main(String[] args) throws IOException{char[] c = Line().toCharArray();int n = c.length;long res = 0l;for (int i = 0; i < n; i++) {int pre = i-1;while (pre>=0&&c[pre]!=c[i]) --pre;res+=1l*(i-pre)*(n-i);}pw.println(res);pw.flush();
}

22、埃氏筛法

  • 筛出 1 到 n 的所有素数
  • 埃氏筛法:如果一个数不是素数,它一定是n个素数的乘积,素数的倍数一定是合数。
public static void main(String[] args) throws IOException{int n = Int();isprime(n);pw.flush();
}private static void isprime(int n) {boolean[] isprime = new boolean[n+1];for (int i = 2; i <= n/i; i++) {if (!isprime[i]){for (int j = 2; j <= n/i; j++) {isprime[i*j]=true;}}}for (int i = 2; i <= n; i++) {if (!isprime[i]){System.out.print(i+" ");}}
}

23、欧拉筛法

  • 筛出 1 到 n 的所有素数
  • 欧拉筛法:每个合数只被它最小的质因子筛一次
  • 将目前找到的每一个素数的i倍标记为合数,如果i本身就是素数的倍数,就去执行下一个 i
public static void main(String[] args) throws IOException{int n = Int();deal(n);pw.flush();
}private static void deal(int n) {boolean[] isprime = new boolean[n+1];int[] prime = new int[n];int count = 0;for (int i = 2; i <= n; i++) {if (!isprime[i]){prime[count++]=i;}for (int j = 0; j < count && i*prime[j]<=n; j++) {isprime[i*prime[j]]=true;if (i%prime[j]==0) break; //欧拉筛精髓  如果i本身就是素数的倍数 跳过去}}for (int i = 0; i < count; i++) {System.out.print(prime[i]+" ");}
}

24、欧拉函数

  • 计算一个数的欧拉函数值,先找出其质因子。
public static void main(String[] args) throws IOException{long n = Long();pw.println(phi(n));pw.flush();
}private static long phi(long n) {long res = n;for (int i = 2; i <= n/i; i++) {if (n%i==0){while (n%i==0){n/=i;}res=res/i*(i-1);}}if (n>1){res=res/n*(n-1);}return res;
}

25、欧拉求和

  • 计算一个区间[ L , R ]的欧拉函数值之和
public static void main(String[] args) throws IOException{int l = Int(),r = Int();int[] phi = EulerSieve(r);long ans = 0;for (int i = l; i <= r; i++) {ans+=phi[i];}pw.println(ans);pw.flush();
}private static int[] EulerSieve(int n) {boolean[] isprime = new boolean[n+1];int[] prime = new int[n+1];int count = 0;int[] phi = new int[n+1];phi[1]=1;for (int i = 2; i <= n; i++) {if (!isprime[i]){prime[count++]=i;phi[i]=i-1;}for (int j = 0; j < count && i*prime[j]<=n; j++) {int m = i*prime[j];isprime[m]=true;if (i%prime[j]==0){phi[m]=prime[j]*phi[i];break;}else {phi[m]=(prime[j]-1)*phi[i];}}}return phi;
}

26、区间素数筛

  • 求大范围的区间素数或者区间素数个数
public class 区间素数筛 {static int a,b;public static void main(String[] args) {Scanner sc = new Scanner(System.in);a = sc.nextInt();b = sc.nextInt();isprime(b);}private static void isprime(int n) {boolean[] isprime = new boolean[n+1];int[] prime = new int[n+1];int count = 0;for (int i = 2; i <= n; i++) {if (!isprime[i]){prime[count++]=i;}for (int j = 0; j < count && i*prime[j]<=n; j++) {int m = i*prime[j];isprime[m]=true;if (i%prime[j]==0){break;}}}for (int i = a; i <= b; i++) {if (!isprime[i]){System.out.print(i+" ");}}}
}

27、桶排序

  • 输入数据 n 过大,用快速排序会超时,这时可用桶排序
private static final int MaxN = (int) 6e5+5;
private static List<Integer>[] bucket = new ArrayList[MaxN];
public static void main(String[] args) throws IOException{int n = Int();for (int i = 0; i < MaxN; i++) {bucket[i]=new ArrayList<>(); //初始化桶集合 集合里全是桶列表}for (int i = 1; i <= n; i++) {  //输入n个数int x = Int();bucket[x/1000].add(x); //设每个桶的值域是1000,分别将x放到相应的桶}for (int i = 0; i < MaxN; i++) {Collections.sort(bucket[i]);  //分别对每个桶的元素进行排序}for (int i = 0; i < MaxN; i++) {  //遍历每个桶排序后的元素for (int item:bucket[i]){System.out.print(item+" ");}}pw.flush();
}

28、费马小定理求逆元

  • 计算 a mod p下的逆元
  • 注意:a mod p ==0, 逆元不存在
  • a^p-1=1(mod p), a^p-2 = a^-1(mod p)
  • a^-1即为逆元
public static void main(String[] args) {Scanner sc = new Scanner(System.in);long a = sc.nextInt();long p = sc.nextInt();if (a%p==0){System.out.println("a模p的逆元不存在");}else {System.out.println(qmi(a,p-2,p));}
}private static long qmi(long a, long b, long p) {long res = 1;while (b>0){if ((b&1)==1){res=res*a%p;}a=a*a%p;b>>=1;}return res;
}

29、阶乘的约数和

  • 阶乘的约数和:p 为素数,cnt 为素数出现的次数
  • 公式:ans=ans*{{[(p^cnt+1) - 1] * [(p-1)^mod-2]%mod+mod}}
public static void main(String[] args) throws IOException{int n = Int();int[] prime = isprime(n);long ans = 1;int mod = 998244353;for (int p:prime){long cnt = 0;if (p>0){int x = n;while (x>0){cnt+=x/p;x/=p;}ans=(ans*((qmi(p,cnt+1,mod)-1)*qmi(p-1,mod-2,mod)%mod+mod))%mod;  //中间这一块防止变为负数需加mod}}pw.println(ans);pw.flush();
}
private static long qmi(long a, long b, long p) {long res=1;while (b>0){if ((b&1)==1){res=res*a%p;}a=a*a%p;b>>=1;}return res;
}
public static int[] isprime(int n){boolean[] isprime = new boolean[n+1];int[] prime = new int[n+1];int count = 0;for (int i = 2; i <= n; i++) {if (!isprime[i]){prime[count++]=i;}for (int j = 0; j < count && i*prime[j]<=n; j++) {int m = i*prime[j];isprime[m]=true;if (i%prime[j]==0){break;}}}return prime;
}

30、最小质因子之和(埃氏筛法)

static boolean[] isprime = new boolean[(int) (3e6+1)];
static long[] ans = new long[(int) (3e6+1)];
public static void main(String[] args) {Scanner sc = new Scanner(System.in);int t = Integer.parseInt(sc.nextLine());get(3000000);for (int i = 2; i <= 3000000; i++) {ans[i] += ans[i-1];}while (t-->0){System.out.println(ans[Integer.parseInt(sc.nextLine())]);}
}private static void get(int n) {for (int i = 2; i <= n; i++) {if (!isprime[i]){ans[i]=i;}for (int j = 2; j <= n/i; j++) {if (!isprime[i*j]){isprime[i*j]=true;ans[i*j]=i;}}}
}

31、排列组合

  • 求组合数
private static long c(long n, long m) {long res = 1;for (long i = n; i >= n-m+1; i--) {res=res*i%mod;}for (int i = 1; i <= m; i++) {res=res*qmi(i,mod-2)%mod;}return res;
}public static long qmi(long a,long b){long res = 1;while (b>0){if ((b&1)==1){res=res*a%mod;}a=a*a%mod;b>>=1;}return res;
}
  • 求排列数
public static long qmi(long a,long b){long res = 1;while (b>0){if ((b&1)==1){res = res*a%mod;}a = a*a%mod;b>>=1;}return res;
}public static long A(long n, long m) {if (m > n) return 0; // 如果m大于n,排列数不存在,返回0long res = 1;// 计算 n!for (long i = n; i > n - m; i--) {res = res * i % mod;}return res;}

32、计算几何公式

  • 类型统一用double 可通过全部用例

1、已知三角形的三个顶点,求三角形面积公式

/**
S = 1/2[(x1y2+x2y3+x3y1)-(x1y3+x2y1+x3y2)]
先求绝对值 [ ]
再整体除以2
*/

2、给出三个点ABC,求C是否在直线AB上

/**
即求斜率AC==AB 如果相等 说明点C在直线AB上
求两点斜率 AB y2-y1/x2-x1
*/

3、给出三个点ABC,求点和直线的关系
/**
求某一点在直线左边、右边、还是在直线上
用向量的叉乘计算
计算向量 AB 和 BC 的叉乘
叉乘为:(x2-x1)(y3-y1)-(y2-y1)(x3-x1)
叉乘大于0 点在直线左边
叉乘等于0 点在直线上
叉乘小于0 点在直线右边
@param args
*/

4、判断直线相交和点位置
/**
判断两条直线是否相交 斜率不等
判断两条直线是否平行 斜率相等

y=Ax+B 斜截式
求两条直线相交的点
x坐标 == B2-B1/A1-A2
y坐标 == Ax+B

判断一个点是否在一个线段上
如果 k1 == k2 说明在线段上 否则不在

*/

5、给出ABC三个点,求点C与线段AB的关系
在这里插入图片描述

33、Floyd 多源最短路

  • Floydl算法是一种用于在加权图中找到所有顶点对之间的最短路径的算法。它与Dijkstra算法不同,Dijkstra算法只能找到从单个源点到其他所有顶点的最短路径,而Floyd算法可以找到图中每一对顶点之间的最短路径。
  • Floyd算法的基本思想是使用动态规划。它通过逐步考虑图中的所有顶点,作为路径中的中继点,来更新任意两点之间的最短路径。算法使用一个二维数组来存储任意两点之间的最短路径长度,并在迭代过程中更新这个数组。
  • 算法步骤如下:
  1. 初始化:创建一个二维数组dist,其中dist[i][j]表示顶点i到顶点j的路径长度。初始时,如果i和j直接相邻,则dist[i][j]为它们之间边的权重;如果i和j不直接相邻,则dist[i][j]为无穷大;对角线上的元素dist[i][i]初始化为0。
  2. 更新路径长度:对于图中的每个顶点k,遍历所有顶点对(i, j),如果dist[i][k] + dist[k][j] < dist[i][j],则更新dist[i][j]为dist[i][k] + dist[k][j]。这个步骤会重复进行,直到所有的顶点都作为中继点被考虑过。
  3. 结束:当所有顶点都作为中继点被考虑过后,算法结束。此时,dist数组中的dist[i][j]就存储了顶点i到顶点j的最短路径长度。
  4. 时间复杂度:O(V^3),其中V是顶点的数量。它不适合处理顶点数量非常大的图。
    static int floyd(int[][] g) {for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) g[i][j] = Math.min(g[i][j], g[i][k]+g[k][j]);return g[1][n];}//初始化for(int i=0;i<n;i++) {Arrays.fill(g[i], INF);tie[i][i] = gon[i][i] = 0;  //自己到自己的距离为0      }//最短距离 表示从顶点1到顶点n的最短路径g[1][n];

34、Dijkstra 单源最短路 可处理非负边权

  • Dijkstra算法是一种用于在加权图中找到单源最短路径的算法。所谓单源最短路径问题,就是给定一个图,其中的每条边都有一个非负权重,以及一个起始顶点,需要找到从该起始顶点到图中所有其他顶点的最短路径。
  • Dijkstra算法的基本思想是,从一个顶点开始,逐步探索图中的其他顶点,同时记录从起始顶点到每个顶点的最短路径长度。算法使用一个优先队列(通常是一个最小堆)来选择下一个访问的顶点,这个顶点是当前已知路径长度中最短的。
  • 算法步骤如下:
  1. 初始化:将起始顶点的路径长度设置为0,其他顶点的路径长度设置为无穷大。创建一个优先队列,将起始顶点加入队列。
  2. 循环:当优先队列非空时,执行以下步骤:
  • 从优先队列中取出具有最小路径长度的顶点。
  • 对于这个顶点的每个邻接顶点,计算通过当前顶点到达邻接顶点的路径长度。如果这个路径长度比已知的最短路径长度更短,就更新最短路径长度,并将邻接顶点加入优先队列。
  1. 结束:当优先队列为空时,算法结束。此时,算法已经找到了从起始顶点到所有其他顶点的最短路径。
  2. 时间复杂度:取决于所使用的优先队列的实现。如果使用数组实现的优先队列,时间复杂度为O(V^2),其中V是顶点的数量。如果使用二叉堆实现的优先队列,时间复杂度为O((V + E) log V),其中E是边的数量。使用斐波那契堆可以实现更优的时间复杂度,为O(E + V log V)。
	static int[] h = new int[N],e = new int[M],ne = new int[M],w = new int[M];static int idx;static int[] dist = new int[N],st = new int[N];static void add(int a,int b,int c) {e[idx] = b;w[idx] = c;ne[idx] = h[a];h[a] = idx++;}static int dijkstra() {Arrays.fill(dist, INF);PriorityQueue<PII> q = new PriorityQueue<PII>((a,b)->(a.dist-b.dist));//小根堆q.add(new PII(0,1));dist[1]=0;while(q.size()>0) {PII top = q.poll();//如果这个点的最短路确定了,那么直接跳过if(st[top.ver]==1) continue;st[top.ver]=1;for(int i=h[top.ver];i!=-1;i=ne[i]) {int j = e[i];if(dist[j]>dist[top.ver]+w[i]) {dist[j] = dist[top.ver]+w[i];q.add(new PII(dist[j],j));}}}return dist[n];}
}
class PII{int dist,ver;public PII(int dist,int ver) {this.dist = dist;this.ver = ver;}
}

35、Kruskal 算法

  • 适用于稀疏图,时间复杂度 O(m*logm)
  • Kruskal算法是一种用于在加权图中找到最小生成树的算法。它按照边的权重顺序(从小到大)选择边,并检查是否形成环。如果不形成环,就将其加入到最小生成树中。这个过程一直持续到所有的顶点都被包含在最小生成树中。
import java.io.*;
import java.math.BigInteger;
import java.util.*;public class Main {public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));public static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));public static StreamTokenizer cin = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));public static PrintWriter cout = new PrintWriter(new OutputStreamWriter(System.out));public static Scanner sc = new Scanner(System.in);public static int maxd = 200000+7;public static int INF = 0x3f3f3f3f;public static int mod = (int) 1e9+7;public static int[] par = new int[maxd]; //存储父节点public static int n;public static class Edge implements Comparable<Edge> {private int u; //起点private int v; //终点private int w; //边的权重public Edge(int u, int v, int w) {this.u = u;this.v = v;this.w = w;}public int compareTo(Edge obj) {return this.w - obj.w;}}public static Edge[] edges = new Edge[maxd<<1]; //无向图,开两倍public static void init(int n,int m){for(int i=1;i<=n;++i){par[i] = i;}}public static int find(int x){if(x!=par[x]) par[x]=find(par[x]);return par[x];}public static void unite(int a,int b){int aa = find(a);int bb = find(b);if(aa!=bb) {par[aa]=bb;}}public static int Kruskal(int m){int res = 0; //结果int cnt = 0; //记录边Arrays.sort(edges,0,m);for(int i=0;i<m;++i){int u = edges[i].u;int v = edges[i].v;int w = edges[i].w;if(find(u)!=find(v)){unite(u,v); //合并res+=w;cnt++;}}if(cnt<n-1) return INF; //若少于n-1条边,则说明图不连通else return res;}public static void main(String[] args) throws Exception {n = nextInt();int m = nextInt();init(n,m);for(int i=0;i<m;++i){int a = nextInt();int b = nextInt();int c = nextInt();edges[i] = new Edge(a,b,c);}int ans = Kruskal(m);cout.println(ans==INF? "orz":ans);cout.flush();closeAll();}public static void cinInit(){cin.wordChars('a', 'z');cin.wordChars('A', 'Z');cin.wordChars(128 + 32, 255);cin.whitespaceChars(0, ' ');cin.commentChar('/');cin.quoteChar('"');cin.quoteChar('\'');cin.parseNumbers(); //可单独使用来还原数字}public static int nextInt() throws Exception{cin.nextToken();return (int) cin.nval;}public static long nextLong() throws Exception{cin.nextToken();return (long) cin.nval;}public static double nextDouble() throws Exception{cin.nextToken();return cin.nval;}public static String nextString() throws Exception{cin.nextToken();return cin.sval;}public static void closeAll() throws Exception {cout.close();in.close();out.close();}}

36、KMP 算法

  • 判断模式串(p)是不是主串(s)的子串,返回主串中出现子串的下标
  • 时间复杂度:O(n)
  • 模式串p,主串s。字符串下标都是从1开始。n是p的长度,m是s的长度。
  • 指针i指向主串,指针j指向模式串,每一轮是将i与j+1的位置比较,如果不满足,j就回退到ne[j]
    如果i和j+1位置相同,那么就j++
  • 一旦找到不符合的,我们就需要找前一位前面的子串的next数组(即 j+1 和 i 的位置比较)
static char[] p,s;//p是模式串,s是主串
static int[] ne = new int[N];//p的next数组,ne[i]=j表示相等的前后缀最大长度
//n是模式串的长度,m是主串的长度。//1.计算模式串p的next数组(背过)
static void getNext() {for(int i=2,j=0;i<=n;i++) {while(j>0 && p[i]!=p[j+1]) j=ne[j];if(p[i]==p[j+1])j++;ne[i] = j;}
}//2.kmp匹配
for(int i=1,j=0;i<=m;i++) {while(j>0 && s[i]!=p[j+1])j=ne[j];if(s[i]==p[j+1]) j++;if(j==n) {//匹配成功out.print(i-n+1+" ");//下标从1开始j = ne[j];//计算后面是否还有子串p}
}

37、Prim 算法

  • 适用于稠密图。时间复杂度:O(n^2)
  • 核心思想:每次挑一条与当前集合相连的最短边。
  • 最短边:取当前点和集合中所有点比较后的最短距离。
  • Prim 算法(朴素)
import java.io.*;
import java.math.BigInteger;
import java.util.*;public class Main {public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));public static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));public static StreamTokenizer cin = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));public static PrintWriter cout = new PrintWriter(new OutputStreamWriter(System.out));public static Scanner sc = new Scanner(System.in);public static int maxd = 200000+7;public static int INF = 0x3f3f3f3f;public static int mod = (int) 1e9+7;public static int[] dis = new int[maxd];public static int[] head = new int[maxd];public static int[] edgePre = new int[maxd<<1]; //无向图,边需要开2倍public static int[] edgeW = new int[maxd<<1];public static int[] edgeTo = new int[maxd<<1];public static boolean[] vis = new boolean[maxd];public static int n;public static int node=0;public static void add_edge(int a,int b,int c){edgeTo[node] = b;edgeW[node] = c;edgePre[node] = head[a];head[a]=node++;}public static void init(int n){for(int i=0;i<=n;++i){dis[i]=INF;vis[i]=false;head[i] = -1;}}public static int Prim(){//默认找到的第一个为集合的首元素int res = 0;for(int i=1;i<=n;++i){int t = -1;for(int j=1;j<=n;++j){if(!vis[j] && (t==-1 || dis[t]>dis[j]))t = j;}vis[t]=true;if(i!=1 && dis[t]==INF) return INF; //当前点与集合中的所有点都不连通,不存在最小生成树if(i!=1) res+=dis[t]; //首元素不需要加for(int j=head[t];j!=-1;j=edgePre[j]){int to = edgeTo[j];dis[to] = Math.min(dis[to],edgeW[j]);}}return res;}public static void main(String[] args) throws Exception {n = nextInt();int m = nextInt();init(n);while(m-->0){int a = nextInt();int b = nextInt();int c = nextInt();add_edge(a,b,c); //无向图add_edge(b,a,c);}int ans = Prim();cout.println(ans==INF? "orz":ans);cout.flush();closeAll();}public static void cinInit(){cin.wordChars('a', 'z');cin.wordChars('A', 'Z');cin.wordChars(128 + 32, 255);cin.whitespaceChars(0, ' ');cin.commentChar('/');cin.quoteChar('"');cin.quoteChar('\'');cin.parseNumbers(); //可单独使用来还原数字}public static int nextInt() throws Exception{cin.nextToken();return (int) cin.nval;}public static long nextLong() throws Exception{cin.nextToken();return (long) cin.nval;}public static double nextDouble() throws Exception{cin.nextToken();return cin.nval;}public static String nextString() throws Exception{cin.nextToken();return cin.sval;}public static void closeAll() throws Exception {cout.close();in.close();out.close();}}
  • Prim 算法(堆优化)
  • 优化后时间复杂度为:时间复杂度 O(m*logn)
import java.io.*;
import java.math.BigInteger;
import java.util.*;/*** @Author DragonOne* @Date 2021/12/5 21:27* @墨水记忆 www.tothefor.com*/
public class Main {public static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));public static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));public static StreamTokenizer cin = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));public static PrintWriter cout = new PrintWriter(new OutputStreamWriter(System.out));public static Scanner sc = new Scanner(System.in);public static int maxd = 200000+7;public static int INF = 0x3f3f3f3f;public static int mod = (int) 1e9+7;public static int[] dis = new int[maxd];public static int[] head = new int[maxd];public static int[] edgePre = new int[maxd<<1]; //无向图,边需要开2倍public static int[] edgeW = new int[maxd<<1];public static int[] edgeTo = new int[maxd<<1];public static boolean[] vis = new boolean[maxd];public static int n;public static int node=0;public static class Edge implements Comparable<Edge> {private int to; //点private int w; //此点到集合的最短距离Edge(int to, int w) {this.to = to;this.w = w;}public int compareTo(Edge obj) {return this.w - obj.w;}}public static void add_edge(int a,int b,int c){edgeTo[node] = b;edgeW[node] = c;edgePre[node] = head[a];head[a]=node++;}public static void init(int n){for(int i=0;i<=n;++i){dis[i]=INF;vis[i]=false;head[i] = -1;}}public static int Prim(){PriorityQueue<Edge> q = new PriorityQueue<Edge>();int res = 0;int cnt = 0; //记录集合中的点数,只有等于给定点数n时才存在最小生成树,小于n则表示图不连通q.add(new Edge(1,0));while(!q.isEmpty()){Edge u = q.poll();if(vis[u.to]) continue;vis[u.to] = true;res+=u.w;cnt++;for(int i=head[u.to];i!=-1;i=edgePre[i]){if(dis[u.to]>edgeW[i]){q.add(new Edge(edgeTo[i],edgeW[i]));}}}if(cnt<n) return INF; //集合中的点数小于给定点数,表示图不连通return res;}public static void main(String[] args) throws Exception {n = nextInt();int m = nextInt();init(n);while(m-->0){int a = nextInt();int b = nextInt();int c = nextInt();add_edge(a,b,c); //无向图add_edge(b,a,c);}int ans = Prim();cout.println(ans==INF? "orz":ans);cout.flush();closeAll();}public static void cinInit(){cin.wordChars('a', 'z');cin.wordChars('A', 'Z');cin.wordChars(128 + 32, 255);cin.whitespaceChars(0, ' ');cin.commentChar('/');cin.quoteChar('"');cin.quoteChar('\'');cin.parseNumbers(); //可单独使用来还原数字}public static int nextInt() throws Exception{cin.nextToken();return (int) cin.nval;}public static long nextLong() throws Exception{cin.nextToken();return (long) cin.nval;}public static double nextDouble() throws Exception{cin.nextToken();return cin.nval;}public static String nextString() throws Exception{cin.nextToken();return cin.sval;}public static void closeAll() throws Exception {cout.close();in.close();out.close();}}

38、BellmanFord 算法

  • BellmanFord算法是一种图论中的算法,它用于计算单源最短路径问题,即从单一源点出发到所有其他节点的最短路径。与Dijkstra算法不同,BellmanFord算法能够处理包含负权边的图,但它无法处理包含负权环的图。
  • Bellman-Ford算法的时间复杂度为O(V*E),其中V是顶点数,E是边数。这是因为算法需要松弛每一条边,并且最多需要松弛V-1轮。
import java.util.*;public class BellmanFord {// 定义边类,包含源点、目标点和权重static class Edge {int src, dest, weight;public Edge(int src, int dest, int weight) {this.src = src; // 源点this.dest = dest; // 目标点this.weight = weight; // 边的权重}}// Bellman-Ford算法实现static void bellmanFord(ArrayList<Edge> edges, int V, int E, int src) {int[] dist = new int[V]; // 距离数组,用于存储从源点到每个点的最短距离// 初始化距离数组,将所有距离设置为无穷大,除了源点设置为0for (int i = 0; i < V; i++)dist[i] = Integer.MAX_VALUE;dist[src] = 0;// 松弛操作,进行V-1轮,每次对所有边进行松弛for (int i = 1; i < V; i++) {for (int j = 0; j < E; j++) {int u = edges.get(j).src; // 边的源点int v = edges.get(j).dest; // 边的目标点int weight = edges.get(j).weight; // 边的权重// 如果通过当前边可以使得目标点的距离更短,则更新距离if (dist[u] != Integer.MAX_VALUE && dist[u] + weight < dist[v])dist[v] = dist[u] + weight;}}// 检测负权环,如果在完成V-1轮松弛后仍然可以松弛,则说明存在负权环for (int j = 0; j < E; j++) {int u = edges.get(j).src;int v = edges.get(j).dest;int weight = edges.get(j).weight;if (dist[u] != Integer.MAX_VALUE && dist[u] + weight < dist[v]) {System.out.println("图中存在负权环");return;}}// 输出最短路径,如果没有负权环,则dist数组中存储的就是最短路径长度for (int i = 0; i < V; i++)System.out.println(i + "\t\t" + dist[i]);}public static void main(String[] args) {int V = 5; // 图中的顶点数int E = 8; // 图中的边数ArrayList<Edge> edges = new ArrayList<>();// 添加边到边的列表中edges.add(new Edge(0, 1, -1));edges.add(new Edge(0, 2, 4));edges.add(new Edge(1, 2, 3));edges.add(new Edge(1, 3, 2));edges.add(new Edge(1, 4, 2));edges.add(new Edge(3, 2, 5));edges.add(new Edge(3, 1, 1));edges.add(new Edge(4, 3, -3));// 从源点0开始执行Bellman-Ford算法bellmanFord(edges, V, E, 0);}
}

39、LIS 最长公共子序列

public static void main(String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int m = sc.nextInt();int[] a1 = new int[n];int[] a2 = new int[m];int[][] dp = new int[n+1][m+1];for (int i = 0; i < n; i++) {a1[i]=sc.nextInt();}for (int i = 0; i < m; i++) {a2[i]=sc.nextInt();}for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (a1[i-1]==a2[j-1]){dp[i][j]=Math.max(dp[i-1][j-1]+1,dp[i][j]);}else {dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);}}}System.out.println(dp[n][m]);}

40、LCS最长上升子序列_朴素

  • 适合输入数据小等于 1e5
int n = Int();
int[] arr = new int[n];
int[] dp1 = new int[n];
int[] dp2 = new int[n];
for (int i = 0; i < n; i++) {arr[i] = Int();dp1[i] = 1;dp2[i] = 1;
}
//从前往后LIS
for (int i = 1; i < n; i++) {for (int j = i; j > 0; j--) {if (arr[i] >= arr[j - 1]) {dp1[i] = Math.max(dp1[j - 1] + 1, dp1[i]);}}
}
//从后往前LIS
for (int i = n - 2; i >= 0; i--) {for (int j = i; j < n - 1; j++) {if (arr[i] >= arr[j + 1]) {dp2[i] = Math.max(dp2[j + 1] + 1, dp2[i]);}}
}
int max = 0;
for (int i = 0; i < n; i++) {max = Math.max(dp1[i] + dp2[i] - 1, max);
}
pw.println(n - max);  //维持左递增右递减至少需要出列多少个元素
pw.flush();

41、LCS最长上升子序列_二分

  • 适合处理较大的输入数据
public static void main(String[] args) throws IOException{int n = Int();int[] f = new int[n+1];for (int i = 0; i < n; i++) {f[i]=Int();}int[] dp = new int[n+1];dp[0]=f[0];int cur = 0;for (int i = 1; i < n; i++) {if (f[i]>dp[cur]){dp[++cur]=f[i];}else {int idx = bs(dp,0,cur,f[i]);dp[idx]=f[i];}}pw.println(cur+1);pw.flush();
}private static int bs(int[] dp, int l, int r, int t) {while (l<r){int mid = (l+r)/2;if (dp[mid]>=t){r = mid;}else {l = mid + 1;}}return r;
}

42、Manacher 算法

  • 判断最长回文子串
  • 计算字符串中每个位置作为回文中心的回文半径的算法,位置i的回文半径用p[i]表示,意思是在转换后的字符串中[i-p[i]+1,i+p[i]-1]是回文的
  • 一般来说偶数长度是不会有回文中心的,因为没有意义。所以Mancher算法就是将原来的字符串变成有回文半径的字符串。可以通过添加字符,注意开头和结尾字符不一样!如ABBA->!#A#B#B#A#+
import java.math.BigInteger;
import java.util.*;public class Main {public static void main(String[] args) {Scanner scanner=new Scanner(System.in);String s=scanner.next();System.out.println(mancher(s));}public static int mancher(String s){StringBuilder str=new StringBuilder();str.append('!');for(int i=0;i<s.length();i++){str.append('#');str.append(s.charAt(i));}str.append("#+");int[] p=new int[str.length()];//r:所有的回文子串中最大的右边界//c:对应的中心点int c=0,r=0,max=-1;for(int i=1;i<str.length()-1;i++){p[i]=i<r?Math.min(r-i,p[2*c-i]):1;while(str.charAt(p[i]+i)==str.charAt(i-p[i])){p[i]++;}if(p[i]+i>r){r=p[i]+i;c=i;}//真实的长度是p[i]-1,因为我们添加了字符,不是原来的字符串max=Math.max(p[i]-1,max);}return max;}
}

43、ST表_求区间最小值

  • ST表是一种用于解决RMQ(Range Minimum/Maximum Query,区间最小/最大值查询)问题的数据结构。它可以在O(nlogn)的时间复杂度内预处理,之后每次查询只需要O(1)的时间复杂度。
public class SparseTable {private int[][] st; // ST表,用于存储预处理的结果private int[] log; // 用于快速计算2的幂的对数private int n; // 数组的长度public SparseTable(int[] arr) {n = arr.length;int maxLog = 32 - Integer.numberOfLeadingZeros(n); // 计算最大的对数,用于确定ST表的大小st = new int[n][maxLog];log = new int[n + 1];// 初始化log数组,用于快速查询2的幂的对数for (int i = 2; i <= n; i++) {log[i] = log[i >> 1] + 1;}// 初始化ST表的第一行,即原数组for (int i = 0; i < n; i++) {st[i][0] = arr[i];}// 预处理ST表的其他行for (int j = 1; j < maxLog; j++) {for (int i = 0; i + (1 << j) <= n; i++) {// 对于每个区间,存储区间内的最小值st[i][j] = Math.min(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);}}}public int query(int l, int r) {int j = log[r - l + 1]; // 计算区间的长度对应的对数// 查询区间内的最小值return Math.min(st[l][j], st[r - (1 << j) + 1][j]);}public static void main(String[] args) {int[] arr = {3, 0, 1, 4, 2};SparseTable st = new SparseTable(arr);// 测试查询System.out.println(st.query(0, 3)); // 输出 0System.out.println(st.query(1, 4)); // 输出 1}
}

44、ST表_求区间最大值

    • ST表是一种用于解决RMQ(Range Minimum/Maximum Query,区间最小/最大值查询)问题的数据结构。它可以在O(nlogn)的时间复杂度内预处理,之后每次查询只需要O(1)的时间复杂度。
public class SparseTable {private int[][] st; // ST表,用于存储预处理的结果private int[] log; // 用于快速计算2的幂的对数private int n; // 数组的长度public SparseTable(int[] arr) {n = arr.length;int maxLog = 32 - Integer.numberOfLeadingZeros(n); // 计算最大的对数,用于确定ST表的大小st = new int[n][maxLog];log = new int[n + 1];// 初始化log数组,用于快速查询2的幂的对数for (int i = 2; i <= n; i++) {log[i] = log[i >> 1] + 1;}// 初始化ST表的第一行,即原数组for (int i = 0; i < n; i++) {st[i][0] = arr[i];}// 预处理ST表的其他行for (int j = 1; j < maxLog; j++) {for (int i = 0; i + (1 << j) <= n; i++) {// 对于每个区间,存储区间内的最大值st[i][j] = Math.max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);}}}public int query(int l, int r) {int j = log[r - l + 1]; // 计算区间的长度对应的对数// 查询区间内的最大值return Math.max(st[l][j], st[r - (1 << j) + 1][j]);}public static void main(String[] args) {int[] arr = {3, 0, 1, 4, 2};SparseTable st = new SparseTable(arr);// 测试查询System.out.println(st.query(0, 3)); // 输出 4System.out.println(st.query(1, 4)); // 输出 4}
}

45、并查集

  • 并查集的模板,用于解决集合的合并与查找问题
  • 并查集通常用于解决元素之间的连通性问题,比如在图论中判断两个节点是否在同一个连通分量中,或者在最小生成树算法中判断是否形成环等
    static int Maxn = 1e5+5;static int[] fa;private static void init(){	  //初始化每个节点的父节点为本身for(int i=0;i<Maxn;i++){fa[i]=i;}}private static void merge(int a, int b) {fa[find(a)]=find(b);  //将根节点a的父节点 设为根节点b}private static int find(int x) {if (fa[x]==x){  //如果x的父节点是本身 即为根节点return x;}else {fa[x]=find(fa[x]); //将父节点设置为根节点return fa[x]; //返回根节点}}
  • Maxn: 这是一个静态变量,用于表示并查集中元素的最大数量。
  • fa: 这是一个整型数组,用于存储每个元素的祖先(或代表元素)。
  • init(): 这个方法用于初始化并查集。它将每个元素的祖先设置为自己,即 fa[i] = i,这意味着一开始每个元素都是一个独立的集合。
  • merge(int a, int b): 这个方法用于合并两个集合。它首先找到代表元素 a 和 b
    的根节点,然后将其中一个根节点的父节点设置为另一个,从而实现两个集合的合并。
  • find(int x): 这个方法用于查找元素 x 的根节点。如果 x 的父节点是本身(即 fa[x] == x),那么 x
    就是根节点,直接返回 x。否则,它递归地查找 fa[x] 的根节点,并将 x
    的父节点设置为这个根节点(这一步是路径压缩,用于优化后续的查找操作)。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com