您的位置:首页 > 教育 > 锐评 > 第T5周:运动鞋品牌识别

第T5周:运动鞋品牌识别

2024/10/6 18:24:15 来源:https://blog.csdn.net/m0_55259388/article/details/140538750  浏览:    关键词:第T5周:运动鞋品牌识别
>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

一、前期工作

1. 设置GPU

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")gpus

2. 导入数据(导入本地数据集)

data_dir = "./46-data/"data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*/*.jpg')))print("图片总数为:",image_count)
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

 

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

  • tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  1. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  1. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
batch_size = 32
img_height = 224
img_width = 224
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory("./46-data/train/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory("./46-data/test/",seed=123,image_size=(img_height, img_width),batch_size=batch_size)

 我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称

class_names = train_ds.class_names
print(class_names)

 

2. 可视化数据 

plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

 

3. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
  • Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。

4. 配置数据集

 

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

 

三、构建CNN网络

 

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样layers.Dropout(0.3),  layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3layers.Dropout(0.3),  layers.Flatten(),                       # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取layers.Dense(len(class_names))               # 输出层,输出预期结果
])model.summary()  # 打印网络结构

 

四、编译

设置动态学习率

📮 ExponentialDecay函数:

tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:

  • initial_learning_rate(初始学习率):初始学习率大小。
  • decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
  • decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
  • staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减
# 设置初始学习率
initial_learning_rate = 0.1lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lrstaircase=True)# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)model.compile(optimizer=optimizer,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps) 

注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

2.早停与保存最佳模型参数

EarlyStopping()参数说明

  • monitor: 被监测的数据。
  • min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
  • patience: 没有进步的训练轮数,在这之后训练就会被停止。
  • verbose: 详细信息模式。
  • mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
  • baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
  • estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStoppingepochs = 50# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',monitor='val_accuracy',verbose=1,save_best_only=True,save_weights_only=True)# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', min_delta=0.001,patience=20, verbose=1)

五、训练模型

 

history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper])

 

六、模型评估

loss和acc

 

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(len(loss))plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

指定图片进行预测

 

# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as np# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg")  #这里选择你需要预测的图片
img = Image.open("./46-data/test/nike/1.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

 

七、总结

本次新增:动态学习率早停和保存最佳模型参数

早停和保存最佳模型参数:通过 TensorFlow Keras 的回调函数来优化模型训练过程。首先,我们定义了一个 `ModelCheckpoint` 回调函数,它在训练过程中会监控验证集的准确率(`val_accuracy`),并且只在验证集准确率提高时保存模型参数。这个回调函数还设置了 `save_best_only=True` 来确保只保存最佳模型,以及 `save_weights_only=True` 来仅保存权重而非整个模型。接着,我们定义了一个 `EarlyStopping` 回调函数,它同样监控验证集的准确率,但当验证集准确率在连续 20 个周期内提升幅度小于 0.001 时,会提前终止训练,以避免过拟合。这些回调函数将被用于模型的训练过程中,以提高训练效率和模型性能。

动态学习率:首先设定了一个初始学习率为 0.1。接着,我们定义了一个学习率的指数衰减策略,使用 TensorFlow Keras 的 `ExponentialDecay` 函数。这个策略使得学习率每经过 10 个训练步骤就会衰减一次,衰减率为 0.92,即每次衰减后学习率变为原来的 92%,并且这种衰减是阶梯式的,即在每个衰减周期内学习率保持不变。然后,我们将这个学习率衰减策略应用到 Adam 优化器中,并用这个优化器来编译模型。在编译模型时,我们指定了损失函数为从 logits 计算的稀疏分类交叉熵,并将准确率作为训练过程中要监控的指标。这样,模型在训练过程中会根据定义的学习率衰减策略自动调整学习率,有助于在训练初期快速收敛,在训练后期则逐渐减小学习率以细化模型的权重调整,从而提高模型的最终性能。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com