您的位置:首页 > 教育 > 培训 > pytorch实现线性回归

pytorch实现线性回归

2025/2/24 13:25:32 来源:https://blog.csdn.net/weixin_45920385/article/details/140097102  浏览:    关键词:pytorch实现线性回归

pytorch实现线性回归

  • 代码
  • 结果

代码

import torch
import numpy as np
from torch.nn import init
from torch.utils import data
from torch import nn# 数据集
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.from_numpy(np.random.normal(0, 1, (num_examples, num_inputs))).type(torch.float32)  # 1000*2
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.from_numpy(np.random.normal(0, 0.01, size=labels.size()))  # 噪声batch_size = 10
# 将训练数据的特征和标签组合
dataset = data.TensorDataset(features, labels)
# 随机读取⼩批量
data_iter = data.DataLoader(dataset, batch_size, shuffle=True)# 使用框架预定义好的层
net = nn.Sequential(nn.Linear(2, 1))  # 输入是二维,输出是一维# 初始化模型参数
# net[0].weight.data.normal_(0, 0.01)
# net[0].bias.data.fill_(0)
init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)# 计算均方误差使用的是MELoss类,也称为L_2范数
loss = nn.MSELoss()
# 实例化SGD(随机梯度下降)实例
optimizer = torch.optim.SGD(net.parameters(), lr=0.03)# 训练
num_epochs = 3
l = 0
for epoch in range(1, num_epochs + 1):for X, y in data_iter:output = net(X)l = loss(output, y.view(-1, 1))optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()l.backward()optimizer.step()print('epoch %d, loss: %f' % (epoch, l.item()))

结果

在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com