代码
import torch
import numpy as np
from torch.nn import init
from torch.utils import data
from torch import nn
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.from_numpy(np.random.normal(0, 1, (num_examples, num_inputs))).type(torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.from_numpy(np.random.normal(0, 0.01, size=labels.size())) batch_size = 10
dataset = data.TensorDataset(features, labels)
data_iter = data.DataLoader(dataset, batch_size, shuffle=True)
net = nn.Sequential(nn.Linear(2, 1))
init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)
loss = nn.MSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.03)
num_epochs = 3
l = 0
for epoch in range(1, num_epochs + 1):for X, y in data_iter:output = net(X)l = loss(output, y.view(-1, 1))optimizer.zero_grad() l.backward()optimizer.step()print('epoch %d, loss: %f' % (epoch, l.item()))
结果
