阶段1:Python编程基础 (1-2周)
核心学习目标
掌握基础语法
理解面向对象编程
熟悉常用内置模块
# 条件判断与循环示例
age = 20
if age >= 18:print("成年人")
else:print("未成年人")# 函数定义示例
def calculate_bmi(weight, height):return weight / (height ** 2)# 类与对象示例
class Dog:def __init__(self, name):self.name = namedef bark(self):print(f"{self.name}:汪汪!")my_dog = Dog("阿黄")
my_dog.bark()
阶段2:数据处理与可视化 (1周)
必备工具库
NumPy 数值计算 数组操作/广播机制
Pandas 数据分析 数据清洗/合并/分组统计
Matplotlib 数据可视化 多种图表绘制/样式自定义
实战案例:鸢尾花数据分析
import pandas as pd
import matplotlib.pyplot as plt# 加载数据
iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',header=None,names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])# 绘制散点矩阵图
pd.plotting.scatter_matrix(iris.iloc[:, :4], figsize=(12,8),c=pd.factorize(iris['class'])[0],cmap='viridis')
plt.show()
阶段3:机器学习基础 (2周)
Scikit-learn实战模板
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split# 加载乳腺癌数据集
data = load_breast_cancer()
X, y = data.data, data.target# 数据拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 模型训练
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)# 预测评估
preds = model.predict(X_test)
print(f"准确率:{accuracy_score(y_test, preds):.2%}")
阶段4:深度学习入门
框架选择建议
PyTorch 优点 动态计算图/易调试
import torch
import torch.nn as nn
import torch.optim as optim# 构建神经网络
class SimpleNN(nn.Module):def __init__(self):super().__init__()self.layers = nn.Sequential(nn.Linear(784, 256),nn.ReLU(),nn.Linear(256, 10))def forward(self, x):return self.layers(x)# 训练配置
model = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练循环示例
for epoch in range(10):for data, labels in train_loader:optimizer.zero_grad()outputs = model(data)loss = criterion(outputs, labels)loss.backward()optimizer.step()print(f'Epoch {epoch+1} 损失值:{loss.item():.4f}')
实战项目演练
手写体识别
# 使用卷积神经网络
class CNN(nn.Module):def __init__(self):super().__init__()self.conv_layers = nn.Sequential(nn.Conv2d(1, 32, 3),nn.ReLU(),nn.MaxPool2d(2),nn.Conv2d(32, 64, 3),nn.ReLU(),nn.MaxPool2d(2))self.fc_layers = nn.Linear(64*5*5, 10)def forward(self, x):x = self.conv_layers(x)x = x.view(x.size(0), -1)return self.fc_layers(x)
创建虚拟环境
python -m venv dl-env
source dl-env/bin/activate # Linux/Mac
dl-env\Scripts\activate # Windows
安装核心包
pip install torch torchvision pandas matplotlib flask
报错处理流程
仔细阅读错误信息
复制错误信息到Google搜索
检查Stack Overflow解答
查阅官方文档