您的位置:首页 > 教育 > 锐评 > 9 12米农村自建房设计图_国内室内设计师排名_提升神马关键词排名报价_2022世界足球排行榜

9 12米农村自建房设计图_国内室内设计师排名_提升神马关键词排名报价_2022世界足球排行榜

2024/12/23 4:57:48 来源:https://blog.csdn.net/DB_GPT/article/details/144633662  浏览:    关键词:9 12米农村自建房设计图_国内室内设计师排名_提升神马关键词排名报价_2022世界足球排行榜
9 12米农村自建房设计图_国内室内设计师排名_提升神马关键词排名报价_2022世界足球排行榜

DB-GPT V0.6.3版本现已上线,快速预览新特性:

 新特性

1. 支持 SiliconCloud 模型,让用户体验多模型的管理能力

如何使用:

  • 修改环境变量文件.env,配置SiliconCloud模型
#  使用 SiliconCloud 的代理模型
LLM_MODEL=siliconflow_proxyllm
# 配置具体使用的模型名称
SILICONFLOW_MODEL_VERSION=Qwen/Qwen2.5-Coder-32B-Instruct
SILICONFLOW_API_BASE=https://api.siliconflow.cn/v1
# 记得填写您在步骤2中获取的 API Key
SILICONFLOW_API_KEY={your-siliconflow-api-key}# 配置使用 SiliconCloud 的 Embedding 模型
EMBEDDING_MODEL=proxy_http_openapi
PROXY_HTTP_OPENAPI_PROXY_SERVER_URL=https://api.siliconflow.cn/v1/embeddings
# 记得填写您在步骤2中获取的 API Key
PROXY_HTTP_OPENAPI_PROXY_API_KEY={your-siliconflow-api-key}
# 配置具体的 Embedding 模型名称
PROXY_HTTP_OPENAPI_PROXY_BACKEND=BAAI/bge-large-zh-v1.5# 配置使用 SiliconCloud 的 rerank 模型
RERANK_MODEL=rerank_proxy_siliconflow
RERANK_PROXY_SILICONFLOW_PROXY_SERVER_URL=https://api.siliconflow.cn/v1/rerank
# 记得填写您在步骤2中获取的 API Key
RERANK_PROXY_SILICONFLOW_PROXY_API_KEY={your-siliconflow-api-key}
# 配置具体的 rerank 模型名称
RERANK_PROXY_SILICONFLOW_PROXY_BACKEND=BAAI/bge-reranker-v2-m3

注意,上述的语言模型(SILICONFLOW_MODEL_VERSION)、 Embedding 模型(PROXY_HTTP_OPENAPI_PROXY_BACKEND)和 rerank 模型(RERANK_PROXY_SILICONFLOW_PROXY_BACKEND)可以从《获取用户模型列表 - SiliconFlow》(https://docs.siliconflow.cn/api-reference/models/get-model-list)中获取。

  • 通过DB-GPT Python SDK使用
pip install "dbgpt>=0.6.3rc2" openai requests numpy
  • 使用SiliconCloud的大语言模型
import asyncio
import os
from dbgpt.core import ModelRequest
from dbgpt.model.proxy import SiliconFlowLLMClientmodel = "Qwen/Qwen2.5-Coder-32B-Instruct"
client = SiliconFlowLLMClient(api_key=os.getenv("SILICONFLOW_API_KEY"),model_alias=model
)res = asyncio.run(client.generate(ModelRequest(model=model,messages=[{"role": "system", "content": "你是一个乐于助人的 AI 助手。"},{"role": "human", "content": "你好"},]))
)
print(res)

更多使用方式参考《在 DB-GPT 中使用 - SiliconFlow》(https://docs.siliconflow.cn/usercases/use-siliconcloud-in-DB-GPT)

2. 新增知识处理工作流,支持Embedding加工知识图谱加工混合知识加工处理

目前DB-GPT知识库提供了文档上传->解析->切片->Embedding->知识图谱三元组抽取->向量数据库存储->图数据库存储等单一的知识加工的能力,但是不具备对文档进行复杂的,多元化的信息抽取能力,因此希望通过构建知识加工工作流来完成复杂的,多元化的,可视化的,用户可自定义的知识抽取,转换,加工流程。

图片

如何使用:

  • 导入工作流模

图片

  • 保存并注册为服务

curl --location --request POST 'http://localhost:5670/api/v1/awel/trigger/rag/knowledge/hybrid/process' \
--header 'Content-Type: application/json' \
-d '{}'

["async persist vector store success 9 chunks.","async persist graph store success 9 chunks."
]

更多使用方式参考《知识加工》(https://www.yuque.com/eosphoros/dbgpt-docs/vg2gsfyf3x9fuglf)。

 3. ChatData 场景支持 OceanBase 向量可视化

图片

 4. GraphRAG 社区总结优化,通过并行总结抽取提升索引构建性能

GraphRAG,作为DB-GPT开源项目的重要模块之一,近期获得了显著的技术改进和性能提升。这个创新框架通过巧妙结合图数据库技术与检索增强生成(RAG)方法,在处理复杂数据关系任务上展现出优越性能。

核心改进包括三个关键方面:

  • 首先,引入了文档结构(Document Structure)索引,通过识别文档的层级关系,构建了包含"next"(顺序关系)和"include"(包含关系)两种边的有向图结构。

  • 其次,在知识图谱构建环节,创新性地采用了"上下文增强"方法和并发抽取优化,将任务处理时间降低至原有耗时的20%。

  • 第三,实现了多维度的检索框架,包括三元组图谱检索(局部)、社区摘要检索(全局)和文档结构检索(原文)。

在基于TuGraph基座的图数据建模阶段,GraphRAG 定义了三种节点类型(document、chunk、entity)和五种边类型(包含关系边和顺序关系边),为知识图谱的构建和检索提供了坚实的基础。在社区摘要方面,采用Leiden算法进行社区检测,通过社区文本化和总结,提供了知识的宏观视角。

相比微软的GraphRAG方案,DB-GPT GraphRAG避免了中间态回答(微软GraphRAG一个中间过程)可能带来的信息损失和语义理解偏差,同时我们还支持文档结构溯源,能够为用户提供更可靠的原文参考信息。这些改进使得GraphRAG在保持知识完整性的同时,显著提升了系统性能和用户体验。

在性能测试方面,与微软版本的GraphRAG相比,DBGPT GraphRAG在保持相近的文档输入规模(42,631 tokens)的情况下取得了显著成果:总Token消耗降低至42.9%(417,565 vs 972,220),生成Tokens量减少至18.4%(41,797 vs 227,230),构建知识图谱的时间缩短至80.1%(170s vs 210s)。同时,对照组和实验组的图谱结构均保持了相当的复杂度(734节点/1164边 vs 779节点/967边),确保了知识表示的完整性。

展示示例:(GraphRAG 也可以向用户展示数据来源/原始文档)

图片

总得来说,GraphRAG取得了不错的效果:在构建同样规模的知识图谱的情况下,我们在构建图谱这个任务上,花费了更少的时间(约80%),消耗了更少的 tokens(约40%)。同时,在回答需要全局检索的用户问题时,根据测试结果,我们版本的 GraphRAG 在时间和 tokens 的消耗上更具优势。此外,我们的 GraphRAG 得益于文档结构的支持,可以搜索原文,并将原文作为参考文本的一个部分返回给用户,让用户可以获得更可靠的原文信息。

后续,我们将支持更加复杂、更加智能的检索链路(相似度检索、自然语言转GQL检索)。DB-GPT GraphRAG的演进一直在路上,敬请期待。

5.  ChatData 针对大宽表场景进行Schema-Linking优化

测试大宽表sql:

/DB-GPT/docker/examples/sqls/case_3_order_wide_table_sqlite_wide.sql

 6. 聊天对话支持 max output tokens 参数

图片

如何设置:

图片

 7. 支持 Claude 模型服务

  • .env 文件进行配置

LLM_MODEL=claude_proxyllm
ANTHROPIC_MODEL_VERSION=claude-3-5-sonnet-20241022
ANTHROPIC_BASE_URL=https://api.openai-proxy.org/anthropic
ANTHROPIC_API_KEY={your-claude-api-key}
  • python使用

import asynciofrom dbgpt.core import ModelRequest
from dbgpt.model.proxy import ClaudeLLMClientclient = ClaudeLLMClient(model_alias="claude-3-5-sonnet-20241022")
print(asyncio.run(client.generate(ModelRequest._build("claude-3-5-sonnet-20241022", "Hi, claude!")))
)

8. Agent 支持上下文记忆

  • 通过在 .env 文件进行配置

MESSAGES_KEEP_START_ROUNDS=0
MESSAGES_KEEP_END_ROUNDS=2

 🐞 Bug 修复

  • 修复了删除图空间后创建同名问题

  • 修复了构建Docker 镜像问题

  • 修复了httpx v0.28.0 proxies 问题

  • 修复Chat Data fix sql not found error 问题

  • 修复了EmbeddingAssemblerOperator算子连接问题

  • 解决fastapi版本问题

 其他

1、 发布DB-GPT Agent论文ROMAS: A Role-Based Multi-Agent System for Database monitoring and Planning(https://arxiv.org/abs/2412.13520)

2、升级dbgpt-tugraph-plugins版本升级到0.1.1

官方文档地址

英文网址:http://docs.dbgpt.cn/docs/overview/

中文网址:https://www.yuque.com/eosphoros/dbgpt-docs/bex30nsv60ru0fmx

致谢

感谢所有贡献者使这次发布成为可能!

@Appointat, @Aries-ckt, @FOkvj, @GITHUBear, @HYSMN, @Sween1y, @fangyinc, @fanzhidongyzby, @toralee and @yhjun10

图片

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com