您的位置:首页 > 教育 > 锐评 > 凡科快图官方下载_网站管理员是干什么的_足球比赛直播2021欧冠决赛_搜索引擎优化课程

凡科快图官方下载_网站管理员是干什么的_足球比赛直播2021欧冠决赛_搜索引擎优化课程

2025/2/25 5:21:43 来源:https://blog.csdn.net/x1131230123/article/details/143857700  浏览:    关键词:凡科快图官方下载_网站管理员是干什么的_足球比赛直播2021欧冠决赛_搜索引擎优化课程
凡科快图官方下载_网站管理员是干什么的_足球比赛直播2021欧冠决赛_搜索引擎优化课程

sglang

项目github仓库:

https://github.com/sgl-project/sglang

项目说明书:

https://sgl-project.github.io/start/install.html

资讯:

https://github.com/sgl-project/sgl-learning-materials?tab=readme-ov-file#the-first-sglang-online-meetup

快得离谱:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

[外链图片转存中…(img-E3n1Ivz9-1731913508383)]

图来源:https://lmsys.org/blog/2024-09-04-sglang-v0-3/

Docker使用:


docker run --gpus device=0 \--shm-size 32g \-p 30000:30000 \-v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \--env "HF_TOKEN=abc-1234" \--ipc=host \-v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \lmsysorg/sglang:latest \python3 -m sglang.launch_server --model-path /Qwen2-VL --host 0.0.0.0 --port 30000 --chat-template qwen2-vl --context-length 8192 --log-level-http warning

启动成功:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

接口文档:

http://101.136.22.140:30000/docs

速度测试代码

import time
from openai import OpenAI# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')# 定义图像路径
image_paths = ["/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]# 设置请求次数
num_requests = 10# 存储每个图像的平均响应时间
average_speeds = {}# 遍历每张图片
for image_path in image_paths:total_time = 0# 对每张图片执行 num_requests 次请求for _ in range(num_requests):start_time = time.time()# 发送请求并获取响应response = client.chat.completions.create(model="/Qwen2-VL",messages=[{'role': 'user','content': [{'type': 'text','text': 'Describe the image please',}, {'type': 'image_url','image_url': {'url': image_path,},}],}],temperature=0.8,top_p=0.8)# 记录响应时间elapsed_time = time.time() - start_timetotal_time += elapsed_time# 打印当前请求的响应内容(可选)print(f"Response for {image_path}: {response.choices[0].message.content}")# 计算并记录该图像的平均响应时间average_speed = total_time / num_requestsaverage_speeds[image_path] = average_speedprint(f"Average speed for {image_path}: {average_speed} seconds")# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():print(f"{image_path}: {avg_speed:.2f} seconds")

速度测试结果

sglang 测试结果:

Model显存占用 (MiB)分辨率处理时间 (秒)
Qwen2-VL-7B-Instruct70G256 x 2561.71
512 x 5121.52
768 x 7681.85
1024 x 10242.05
1280 x 12801.88
2560 x 25603.26

纯transformer,不用加速框架,我之前的测了一张图的速度是:5.22 seconds,很慢。

附录-vllm速度测试

启动:

docker run --gpus device=0 \-v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \-v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \-p 30000:8000 \--ipc=host \vllm/vllm-openai:latest \--model /Qwen2-VL --gpu_memory_utilization=0.9 

代码:

import time
import base64
from openai import OpenAI# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')# 定义图像路径
image_paths = ["/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg","/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]# 设置请求次数
num_requests = 10# 存储每个图像的平均响应时间
average_speeds = {}# 将图片转换为 Base64 编码的函数
def image_to_base64(image_path):with open(image_path, "rb") as img_file:return base64.b64encode(img_file.read()).decode('utf-8')# 遍历每张图片
for image_path in image_paths:total_time = 0# 将图片转换为 Base64 编码image_base64 = image_to_base64(image_path)# 对每张图片执行 num_requests 次请求for _ in range(num_requests):start_time = time.time()# 发送请求并获取响应response = client.chat.completions.create(model="/Qwen2-VL",messages=[{'role': 'user','content': [{'type': 'text','text': 'Describe the image please',}, {'type': 'image_url','image_url': {'url': f"data:image/jpeg;base64,{image_base64}",  # 使用Base64编码的图片},}],}],temperature=0.8,top_p=0.8)# 记录响应时间elapsed_time = time.time() - start_timetotal_time += elapsed_time# 打印当前请求的响应内容(可选)print(f"Response for {image_path}: {response.choices[0].message.content}")# 计算并记录该图像的平均响应时间average_speed = total_time / num_requestsaverage_speeds[image_path] = average_speedprint(f"Average speed for {image_path}: {average_speed} seconds")# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():print(f"{image_path}: {avg_speed:.2f} seconds")

速度:

Model显存占用 (MiB)分辨率处理时间 (秒)
Qwen2-VL-72B-Instruct-GPTQ-Int470G256 x 2561.50
512 x 5121.59
768 x 7681.61
1024 x 10241.67
1280 x 12801.81
2560 x 25601.97

https://www.dong-blog.fun/post/1856

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com