您的位置:首页 > 汽车 > 时评 > io域名购买_金华网站建设工程网站建设_搜索引擎优化特点_有人百度看片吗

io域名购买_金华网站建设工程网站建设_搜索引擎优化特点_有人百度看片吗

2025/4/3 14:39:32 来源:https://blog.csdn.net/qq_27390023/article/details/146375076  浏览:    关键词:io域名购买_金华网站建设工程网站建设_搜索引擎优化特点_有人百度看片吗
io域名购买_金华网站建设工程网站建设_搜索引擎优化特点_有人百度看片吗

PyTorch 的 多维张量索引 非常强大,但理解索引的取值有一定的难度。下面以具体的示例数据解释这种复杂的索引操作。

1.  单个多维张量索引

示例代码:
import numpy as npdata = torch.arange(12).view(3, 4)
print(f"输入数据data为:\n{data},\n形状为:{data.shape}")
print("--"*10)## 一维张量
one_dim_index = torch.tensor([0, 1])
print(f"一维张量为:\n{one_dim_index},\n形状为:{one_dim_index.shape}\n")
result = data[one_dim_index]
print(f"取索引后数据为:\n{result},\n形状为:{result.shape}")
print("--"*10)## 创建不同形式的多维索引
multi_dim_index1 = torch.tensor([[0], [1]])
print(f"多维张量为:\n{multi_dim_index1},\n形状为:{multi_dim_index1.shape}\n")
result1 = data[multi_dim_index1]
print(f"取索引后数据为:\n{result1},\n形状为:{result1.shape}")
print("--"*10)multi_dim_index2 = torch.tensor([[[0], [1]]])
print(f"多维张量为:\n{multi_dim_index2},\n形状为:{multi_dim_index2.shape}\n")
result2 = data[multi_dim_index2]
print(f"取索引后数据为:\n{result2},\n形状为:{result2.shape}")
print("--"*10)multi_dim_index3 = torch.tensor([[[0, 1]]])
print(f"多维张量为:\n{multi_dim_index3},\n形状为:{multi_dim_index3.shape}\n")
result3 = data[multi_dim_index3]
print(f"取索引后数据为:\n{result3},\n形状为:{result3.shape}")
print("--"*10)
代码逐行解读
1. 导入必要的库

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com