您的位置:首页 > 汽车 > 时评 > 营销最好的方法_大连百度推广排名优化_搜索引擎营销广告_网店推广软文范例

营销最好的方法_大连百度推广排名优化_搜索引擎营销广告_网店推广软文范例

2025/1/5 10:53:26 来源:https://blog.csdn.net/2301_76769195/article/details/144798089  浏览:    关键词:营销最好的方法_大连百度推广排名优化_搜索引擎营销广告_网店推广软文范例
营销最好的方法_大连百度推广排名优化_搜索引擎营销广告_网店推广软文范例

文章目录

    • 1. 如何训练回归问题
    • 2. 泛化能力
    • 3. 误差来源
    • 4. 正则化
    • 5. 交叉验证

1. 如何训练回归问题

第一步:定义模型

  • 线性模型: y ^ = b + ∑ j w j x j \hat{y} = b + \sum_{j} w_j x_j y^=b+jwjxj
    • 其中,( w ) 是权重,( b ) 是偏差。

第二步:确定损失函数

  • 损失函数:实际值和预测值的差平方和
    L = ∑ i = 1 n ( y ^ i − ( b + ∑ j w j x i j ) ) 2 L = \sum_{i=1}^{n} (\hat{y}_i - (b + \sum_{j} w_j x_{ij}))^2 L=i=1n(y^i(b+jwjxij))2

第三步:寻找最好的函数

目的:

  • 找到最好的函数,目的是找到参数 ( w ) 和 ( b ) 使损失函数最小。

方法:

  • 梯度下降法
    • 计算当前参数 ( w ) 和 ( b ) 的梯度。
    • 分别对 ( w ) 和 ( b ) 计算偏导数。
    • 更新参数:
      w ′ = w − η ⋅ ∂ L ∂ w , b ′ = b − η ⋅ ∂ L ∂ b w' = w - \eta \cdot \frac{\partial L}{\partial w}, \quad b' = b - \eta \cdot \frac{\partial L}{\partial b} w=wηwL,b=bηbL
      其中, η \eta η 是学习率。

说明:

  • 线性模型没有局部最优解,但学习率选择会影响参数是否能跨过最优解。

2. 泛化能力

欠拟合

  • 概念:没有训练到位,训练结果和测试结果都不好。
  • 原因:迭代次数少,模型过于简单。
  • 解决方法:引入新参数,提高模型复杂度。
  • 特点:偏差大,方差小。

过拟合

  • 概念:训练结果很好,但测试结果不好。
  • 原因:为了迎合训练数据,引入高次项,导致模型过于复杂,曲线变得过于曲折。
    • 权重影响模型的平滑度,方法影响的是上下平移。
  • 解决方法:
    • 增加训练数据,复杂模型更容易找到最好的函数。
    • 人工降维,减少模型复杂度。
    • 引入正则化参数,减小权重,使曲线平滑。
    • 使用 Dropout 和 Early Stop 等技术。
  • 特点:偏差小,方差大。

3. 误差来源

方差(Variance)

  • 定义:训练结果与训练结果平均值之间的方差。
  • 描述:反映了模型的抗扰动能力,训练结果的分散程度。

偏差(Bias)

  • 定义:训练结果与真实值的偏差。
  • 描述:刻画了模型的拟合能力,训练结果偏离正确结果的程度。

总结:

  • 模型简单:
    • Function set 小 → 方差小 → 偏差大 → 曲线平滑 → 欠拟合 → 通过调整模型复杂度解决。
  • 模型复杂:
    • Function set 大 → 方差大 → 偏差小 → 曲线陡峭 → 过拟合 → 通过正则化解决。

4. 正则化

目的

  • 在最小化损失函数的同时,减小权重的值。
  • 权重越小,曲线越平滑,输入变化对结果的影响较小。
  • 控制权重的更新,减小模型复杂度。

实现方法:

  • 在损失函数中加入正则化项: L reg = L + λ ∑ i w i 2 L_{\text{reg}} = L + \lambda \sum_{i} w_i^2 Lreg=L+λiwi2
  • 其中, λ \lambda λ 是正则化参数,控制权重的大小
  • 因为要最小化Loss,所以权重也会被最小化

5. 交叉验证

定义:

  • 交叉验证:划分训练集和测试集,模拟测试结果的不可预测性,避免过拟合。

目的:

  • 使用验证集验证训练结果,并根据验证结果调整模型,确保泛化能力。

步骤:

  1. 将数据划分为训练集和验证集。
  2. 使用验证集模拟测试集,验证训练结果。
  3. 根据验证集上的表现调整模型。
  4. 使用整个训练集重新训练模型,得到最终的模型。

注意:

  • 验证集调整后,不应根据测试集的结果再做调整,即便你忍不住。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com