您的位置:首页 > 汽车 > 时评 > 搭建网站原理_烟台市委网站官网_网站建设全包_seo站内优化培训

搭建网站原理_烟台市委网站官网_网站建设全包_seo站内优化培训

2024/12/26 18:58:32 来源:https://blog.csdn.net/2301_79438104/article/details/144021886  浏览:    关键词:搭建网站原理_烟台市委网站官网_网站建设全包_seo站内优化培训
搭建网站原理_烟台市委网站官网_网站建设全包_seo站内优化培训

MySQL 事务

何谓事务?

我们设想一个场景,这个场景中我们需要插入多条相关联的数据到数据库,不幸的是,这个过程可能会遇到下面这些问题:

  • 数据库中途突然因为某些原因挂掉了。
  • 客户端突然因为网络原因连接不上数据库了。
  • 并发访问数据库时,多个线程同时写入数据库,覆盖了彼此的更改。

上面的任何一个问题都可能会导致数据的不一致性。为了保证数据的一致性,系统必须能够处理这些问题。事务就是我们抽象出来简化这些问题的首选机制。事务的概念起源于数据库,目前,已经成为一个比较广泛的概念。

何为事务? 一言蔽之,事务是逻辑上的一组操作,要么都执行,要么都不执行。

事务最经典也经常被拿出来说例子就是转账了。假如小明要给小红转账 1000 元,这个转账会涉及到两个关键操作,这两个操作必须都成功或者都失败。

  1. 将小明的余额减少 1000 元
  2. 将小红的余额增加 1000 元。

事务会把这两个操作就可以看成逻辑上的一个整体,这个整体包含的操作要么都成功,要么都要失败。这样就不会出现小明余额减少而小红的余额却并没有增加的情况。

何谓数据库事务?

大多数情况下,我们在谈论事务的时候,如果没有特指分布式事务,往往指的就是数据库事务

数据库事务在我们日常开发中接触的最多了。如果你的项目属于单体架构的话,你接触到的往往就是数据库事务了。

那数据库事务有什么作用呢?

简单来说,数据库事务可以保证多个对数据库的操作(也就是 SQL 语句)构成一个逻辑上的整体。构成这个逻辑上的整体的这些数据库操作遵循:要么全部执行成功,要么全部不执行

# 开启一个事务
START TRANSACTION;
# 多条 SQL 语句
SQL1,SQL2...
## 提交事务
COMMIT;

另外,关系型数据库(例如:MySQLSQL ServerOracle 等)事务都有 ACID 特性:

  • 原子性Atomicity):事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  • 一致性Consistency):执行事务前后,数据保持一致,例如转账业务中,无论事务是否成功,转账者和收款人的总额应该是不变的;
  • 隔离性Isolation):并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  • 持久性Durability):一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

🌈 这里要额外补充一点:只有保证了事务的持久性、原子性、隔离性之后,一致性才能得到保障。也就是说 A、I、D 是手段,C 是目的! 想必大家也和我一样,被 ACID 这个概念被误导了很久! 我也是看周志明老师的公开课《周志明的软件架构课》才搞清楚的(多看好书!!!)。

并发事务带来了哪些问题?

在典型的应用程序中,多个事务并发运行,经常会操作相同的数据来完成各自的任务(多个用户对同一数据进行操作)。并发虽然是必须的,但可能会导致以下的问题。

脏读(Dirty read)

一个事务读取数据并且对数据进行了修改,这个修改对其他事务来说是可见的,即使当前事务没有提交。这时另外一个事务读取了这个还未提交的数据,但第一个事务突然回滚,导致数据并没有被提交到数据库,那第二个事务读取到的就是脏数据,这也就是脏读的由来。

例如:事务 1 读取某表中的数据 A=20,事务 1 修改 A=A-1,事务 2 读取到 A = 19,事务 1 回滚导致对 A 的修改并未提交到数据库, A 的值还是 20。

丢失修改(Lost to modify)

在一个事务读取一个数据时,另外一个事务也访问了该数据,那么在第一个事务中修改了这个数据后,第二个事务也修改了这个数据。这样第一个事务内的修改结果就被丢失,因此称为丢失修改。

例如:事务 1 读取某表中的数据 A=20,事务 2 也读取 A=20,事务 1 先修改 A=A-1,事务 2 后来也修改 A=A-1,最终结果 A=19,事务 1 的修改被丢失。

不可重复读(Unrepeatable read)

指在一个事务内多次读同一数据。在这个事务还没有结束时,另一个事务也访问该数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改导致第一个事务两次读取的数据可能不太一样。这就发生了在一个事务内两次读到的数据是不一样的情况,因此称为不可重复读。

例如:事务 1 读取某表中的数据 A=20,事务 2 也读取 A=20,事务 1 修改 A=A-1,事务 2 再次读取 A =19,此时读取的结果和第一次读取的结果不同。

幻读(Phantom read)

幻读与不可重复读类似。它发生在一个事务读取了几行数据,接着另一个并发事务插入了一些数据时。在随后的查询中,第一个事务就会发现多了一些原本不存在的记录,就好像发生了幻觉一样,所以称为幻读。

例如:事务 2 读取某个范围的数据,事务 1 在这个范围插入了新的数据,事务 2 再次读取这个范围的数据发现相比于第一次读取的结果多了新的数据。

不可重复读和幻读有什么区别?

  • 不可重复读的重点是内容修改或者记录减少比如多次读取一条记录发现其中某些记录的值被修改;
  • 幻读的重点在于记录新增比如多次执行同一条查询语句(DQL)时,发现查到的记录增加了。

幻读其实可以看作是不可重复读的一种特殊情况,单独把幻读区分出来的原因主要是解决幻读和不可重复读的方案不一样。

举个例子:执行 deleteupdate 操作的时候,可以直接对记录加锁,保证事务安全。而执行 insert 操作的时候,由于记录锁(Record Lock)只能锁住已经存在的记录,为了避免插入新记录,需要依赖间隙锁(Gap Lock)。也就是说执行 insert 操作的时候需要依赖 Next-Key Lock(Record Lock+Gap Lock) 进行加锁来保证不出现幻读。

并发事务的控制方式有哪些?

MySQL 中并发事务的控制方式无非就两种:MVCC。锁可以看作是悲观控制的模式,多版本并发控制(MVCC,Multiversion concurrency control)可以看作是乐观控制的模式。

控制方式下会通过锁来显式控制共享资源而不是通过调度手段,MySQL 中主要是通过 读写锁 来实现并发控制。

  • 共享锁(S 锁):又称读锁,事务在读取记录的时候获取共享锁,允许多个事务同时获取(锁兼容)。
  • 排他锁(X 锁):又称写锁/独占锁,事务在修改记录的时候获取排他锁,不允许多个事务同时获取。如果一个记录已经被加了排他锁,那其他事务不能再对这条记录加任何类型的锁(锁不兼容)。

读写锁可以做到读读并行,但是无法做到写读、写写并行。另外,根据根据锁粒度的不同,又被分为 表级锁(table-level locking)行级锁(row-level locking) 。InnoDB 不光支持表级锁,还支持行级锁,默认为行级锁。行级锁的粒度更小,仅对相关的记录上锁即可(对一行或者多行记录加锁),所以对于并发写入操作来说, InnoDB 的性能更高。不论是表级锁还是行级锁,都存在共享锁(Share Lock,S 锁)和排他锁(Exclusive Lock,X 锁)这两类。

MVCC 是多版本并发控制方法,即对一份数据会存储多个版本,通过事务的可见性来保证事务能看到自己应该看到的版本。通常会有一个全局的版本分配器来为每一行数据设置版本号,版本号是唯一的。

MVCC 在 MySQL 中实现所依赖的手段主要是: 隐藏字段、read view、undo log

  • undo log : undo log 用于记录某行数据的多个版本的数据。
  • read view 和 隐藏字段 : 用来判断当前版本数据的可见性。

关于 InnoDB 对 MVCC 的具体实现可以看这篇文章:InnoDB 存储引擎对 MVCC 的实现 。

SQL 标准定义了哪些事务隔离级别?

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交) :最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
  • READ-COMMITTED(读取已提交) :允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
  • REPEATABLE-READ(可重复读) :对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
  • SERIALIZABLE(可串行化) :最高的隔离级别,完全服从 ACID 的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。

MySQL 的隔离级别是基于锁实现的吗?

MySQL 的隔离级别基于锁和 MVCC 机制共同实现的。

SERIALIZABLE 隔离级别是通过锁来实现的,READ-COMMITTED 和 REPEATABLE-READ 隔离级别是基于 MVCC 实现的。不过, SERIALIZABLE 之外的其他隔离级别可能也需要用到锁机制,就比如 REPEATABLE-READ 在当前读情况下需要使用加锁读来保证不会出现幻读。

MySQL 的默认隔离级别是什么?

MySQL InnoDB 存储引擎的默认支持的隔离级别是 REPEATABLE-READ(可重读)。我们可以通过SELECT @@tx_isolation;命令来查看,MySQL 8.0 该命令改为SELECT @@transaction_isolation;

mysql> SELECT @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+

关于 MySQL 事务隔离级别的详细介绍,可以看看我写的这篇文章:MySQL 事务隔离级别详解。

MySQL 锁

锁是一种常见的并发事务的控制方式。

表级锁和行级锁了解吗?有什么区别?

MyISAM 仅仅支持表级锁(table-level locking),一锁就锁整张表,这在并发写的情况下性非常差。InnoDB 不光支持表级锁(table-level locking),还支持行级锁(row-level locking),默认为行级锁。

行级锁的粒度更小,仅对相关的记录上锁即可(对一行或者多行记录加锁),所以对于并发写入操作来说, InnoDB 的性能更高。

表级锁和行级锁对比

  • 表级锁: MySQL 中锁定粒度最大的一种锁(全局锁除外),是针对非索引字段加的锁,对当前操作的整张表加锁,实现简单,资源消耗也比较少,加锁快,不会出现死锁。不过,触发锁冲突的概率最高,高并发下效率极低。表级锁和存储引擎无关,MyISAM 和 InnoDB 引擎都支持表级锁。
  • 行级锁: MySQL 中锁定粒度最小的一种锁,是 针对索引字段加的锁 ,只针对当前操作的行记录进行加锁。 行级锁能大大减少数据库操作的冲突。其加锁粒度最小,并发度高,但加锁的开销也最大,加锁慢,会出现死锁。行级锁和存储引擎有关,是在存储引擎层面实现的。

行级锁的使用有什么注意事项?

InnoDB 的行锁是针对索引字段加的锁,表级锁是针对非索引字段加的锁。当我们执行 UPDATEDELETE 语句时,如果 WHERE条件中字段没有命中唯一索引或者索引失效的话,就会导致扫描全表对表中的所有行记录进行加锁。这个在我们日常工作开发中经常会遇到,一定要多多注意!!!

不过,很多时候即使用了索引也有可能会走全表扫描,这是因为 MySQL 优化器的原因。

InnoDB 有哪几类行锁?

InnoDB 行锁是通过对索引数据页上的记录加锁实现的,MySQL InnoDB 支持三种行锁定方式:

  • 记录锁(Record Lock):也被称为记录锁,属于单个行记录上的锁。
  • 间隙锁(Gap Lock):锁定一个范围,不包括记录本身。
  • 临键锁(Next-Key Lock):Record Lock+Gap Lock,锁定一个范围,包含记录本身,主要目的是为了解决幻读问题(MySQL 事务部分提到过)。记录锁只能锁住已经存在的记录,为了避免插入新记录,需要依赖间隙锁。

在 InnoDB 默认的隔离级别 REPEATABLE-READ 下,行锁默认使用的是 Next-Key Lock。但是,如果操作的索引是唯一索引或主键,InnoDB 会对 Next-Key Lock 进行优化,将其降级为 Record Lock,即仅锁住索引本身,而不是范围。

一些大厂面试中可能会问到 Next-Key Lock 的加锁范围,这里推荐一篇文章:MySQL next-key lock 加锁范围是什么? - 程序员小航 - 2021 。

共享锁和排他锁呢?

不论是表级锁还是行级锁,都存在共享锁(Share Lock,S 锁)和排他锁(Exclusive Lock,X 锁)这两类:

  • 共享锁(S 锁):又称读锁,事务在读取记录的时候获取共享锁,允许多个事务同时获取(锁兼容)。
  • 排他锁(X 锁):又称写锁/独占锁,事务在修改记录的时候获取排他锁,不允许多个事务同时获取。如果一个记录已经被加了排他锁,那其他事务不能再对这条事务加任何类型的锁(锁不兼容)。

排他锁与任何的锁都不兼容,共享锁仅和共享锁兼容。

由于 MVCC 的存在,对于一般的 SELECT 语句,InnoDB 不会加任何锁。不过, 你可以通过以下语句显式加共享锁或排他锁。

# 共享锁 可以在 MySQL 5.7 和 MySQL 8.0 中使用
SELECT ... LOCK IN SHARE MODE;
# 共享锁 可以在 MySQL 8.0 中使用
SELECT ... FOR SHARE;
# 排他锁
SELECT ... FOR UPDATE;

意向锁有什么作用?

如果需要用到表锁的话,如何判断表中的记录没有行锁呢,一行一行遍历肯定是不行,性能太差。我们需要用到一个叫做意向锁的东东来快速判断是否可以对某个表使用表锁。

意向锁是表级锁,共有两种:

  • 意向共享锁(Intention Shared Lock,IS 锁):事务有意向对表中的某些记录加共享锁(S 锁),加共享锁前必须先取得该表的 IS 锁。
  • 意向排他锁(Intention Exclusive Lock,IX 锁):事务有意向对表中的某些记录加排他锁(X 锁),加排他锁之前必须先取得该表的 IX 锁。

意向锁是由数据引擎自己维护的,用户无法手动操作意向锁,在为数据行加共享/排他锁之前,InnoDB 会先获取该数据行所在在数据表的对应意向锁。

意向锁之间是互相兼容的。

 意向锁和共享锁和排它锁互斥(这里指的是表级别的共享锁和排他锁,意向锁不会与行级的共享锁和排他锁互斥)。

《MySQL 技术内幕 InnoDB 存储引擎》这本书对应的描述应该是笔误了。

当前读和快照读有什么区别?

快照读(一致性非锁定读)就是单纯的 SELECT 语句,但不包括下面这两类 SELECT 语句:

SELECT ... FOR UPDATE
# 共享锁 可以在 MySQL 5.7 和 MySQL 8.0 中使用
SELECT ... LOCK IN SHARE MODE;
# 共享锁 可以在 MySQL 8.0 中使用
SELECT ... FOR SHARE;

快照即记录的历史版本,每行记录可能存在多个历史版本(多版本技术)。

快照读的情况下,如果读取的记录正在执行 UPDATE/DELETE 操作,读取操作不会因此去等待记录上 X 锁的释放,而是会去读取行的一个快照。

只有在事务隔离级别 RC(读取已提交) 和 RR(可重读)下,InnoDB 才会使用一致性非锁定读:

  • 在 RC 级别下,对于快照数据,一致性非锁定读总是读取被锁定行的最新一份快照数据。
  • 在 RR 级别下,对于快照数据,一致性非锁定读总是读取本事务开始时的行数据版本。

快照读比较适合对于数据一致性要求不是特别高且追求极致性能的业务场景。

当前读 (一致性锁定读)就是给行记录加 X 锁或 S 锁。

当前读的一些常见 SQL 语句类型如下:

# 对读的记录加一个X锁
SELECT...FOR UPDATE
# 对读的记录加一个S锁
SELECT...LOCK IN SHARE MODE
# 对读的记录加一个S锁
SELECT...FOR SHARE
# 对修改的记录加一个X锁
INSERT...
UPDATE...
DELETE...

自增锁有了解吗?

不太重要的一个知识点,简单了解即可。

关系型数据库设计表的时候,通常会有一列作为自增主键。InnoDB 中的自增主键会涉及一种比较特殊的表级锁— 自增锁(AUTO-INC Locks)

CREATE TABLE `sequence_id` (`id` BIGINT(20) UNSIGNED NOT NULL AUTO_INCREMENT,`stub` CHAR(10) NOT NULL DEFAULT '',PRIMARY KEY (`id`),UNIQUE KEY `stub` (`stub`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

更准确点来说,不仅仅是自增主键,AUTO_INCREMENT的列都会涉及到自增锁,毕竟非主键也可以设置自增长。

如果一个事务正在插入数据到有自增列的表时,会先获取自增锁,拿不到就可能会被阻塞住。这里的阻塞行为只是自增锁行为的其中一种,可以理解为自增锁就是一个接口,其具体的实现有多种。具体的配置项为 innodb_autoinc_lock_mode (MySQL 5.1.22 引入),可以选择的值如下:

交错模式下,所有的“INSERT-LIKE”语句(所有的插入语句,包括:INSERTREPLACEINSERT…SELECTREPLACE…SELECTLOAD DATA等)都不使用表级锁,使用的是轻量级互斥锁实现,多条插入语句可以并发执行,速度更快,扩展性也更好。

不过,如果你的 MySQL 数据库有主从同步需求并且 Binlog 存储格式为 Statement 的话,不要将 InnoDB 自增锁模式设置为交叉模式,不然会有数据不一致性问题。这是因为并发情况下插入语句的执行顺序就无法得到保障。

如果 MySQL 采用的格式为 Statement ,那么 MySQL 的主从同步实际上同步的就是一条一条的 SQL 语句。

最后,再推荐一篇文章:为什么 MySQL 的自增主键不单调也不连续 。

MySQL 性能优化

关于 MySQL 性能优化的建议总结,请看这篇文章:MySQL 高性能优化规范建议总结 。

能用 MySQL 直接存储文件(比如图片)吗?

可以是可以,直接存储文件对应的二进制数据即可。不过,还是建议不要在数据库中存储文件,会严重影响数据库性能,消耗过多存储空间。

可以选择使用云服务厂商提供的开箱即用的文件存储服务,成熟稳定,价格也比较低。

也可以选择自建文件存储服务,实现起来也不难,基于 FastDFS、MinIO(推荐) 等开源项目就可以实现分布式文件服务。

数据库只存储文件地址信息,文件由文件存储服务负责存储。

相关阅读:Spring Boot 整合 MinIO 实现分布式文件服务 。

MySQL 如何存储 IP 地址?

可以将 IP 地址转换成整形数据存储,性能更好,占用空间也更小。

MySQL 提供了两个方法来处理 ip 地址

  • INET_ATON():把 ip 转为无符号整型 (4-8 位)
  • INET_NTOA() :把整型的 ip 转为地址

插入数据前,先用 INET_ATON() 把 ip 地址转为整型,显示数据时,使用 INET_NTOA() 把整型的 ip 地址转为地址显示即可。

有哪些常见的 SQL 优化手段?

如何分析 SQL 的性能?

我们可以使用 EXPLAIN 命令来分析 SQL 的 执行计划 。执行计划是指一条 SQL 语句在经过 MySQL 查询优化器的优化会后,具体的执行方式。

EXPLAIN 并不会真的去执行相关的语句,而是通过 查询优化器 对语句进行分析,找出最优的查询方案,并显示对应的信息。

EXPLAIN 适用于 SELECT, DELETE, INSERT, REPLACE, 和 UPDATE语句,我们一般分析 SELECT 查询较多。

我们这里简单来演示一下 EXPLAIN 的使用。

EXPLAIN 的输出格式如下:

mysql> EXPLAIN SELECT `score`,`name` FROM `cus_order` ORDER BY `score` DESC;
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
| id | select_type | table     | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra          |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
|  1 | SIMPLE      | cus_order | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 997572 |   100.00 | Using filesort |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+----------------+
1 row in set, 1 warning (0.00 sec)

各个字段的含义如下:

 

 

篇幅问题,我这里只是简单介绍了一下 MySQL 执行计划,详细介绍请看:SQL 的执行计划这篇文章。

读写分离和分库分表了解吗?

读写分离和分库分表相关的问题比较多,于是,我单独写了一篇文章来介绍:读写分离和分库分表详解。

深度分页如何优化?

深度分页介绍及优化建议

数据冷热分离如何做?

数据冷热分离详解

MySQL 性能怎么优化?

MySQL 性能优化是一个系统性工程,涉及多个方面,在面试中不可能面面俱到。因此,建议按照“点-线-面”的思路展开,从核心问题入手,再逐步扩展,展示出你对问题的思考深度和解决能力。

1. 抓住核心:慢 SQL 定位与分析

性能优化的第一步永远是找到瓶颈。面试时,建议先从 慢 SQL 定位和分析 入手,这不仅能展示你解决问题的思路,还能体现你对数据库性能监控的熟练掌握:

  • 监控工具: 介绍常用的慢 SQL 监控工具,如 MySQL 慢查询日志Performance Schema 等,说明你对这些工具的熟悉程度以及如何通过它们定位问题。
  • EXPLAIN 命令: 详细说明 EXPLAIN 命令的使用,分析查询计划、索引使用情况,可以结合实际案例展示如何解读分析结果,比如执行顺序、索引使用情况、全表扫描等。

2. 由点及面:索引、表结构和 SQL 优化

定位到慢 SQL 后,接下来就要针对具体问题进行优化。 这里可以重点介绍索引、表结构和 SQL 编写规范等方面的优化技巧:

  • 索引优化: 这是 MySQL 性能优化的重点,可以介绍索引的创建原则、覆盖索引、最左前缀匹配原则等。如果能结合你项目的实际应用来说明如何选择合适的索引,会更加分一些。
  • 表结构优化: 优化表结构设计,包括选择合适的字段类型、避免冗余字段、合理使用范式和反范式设计等等。
  • SQL 优化: 避免使用 SELECT *、尽量使用具体字段、使用连接查询代替子查询、合理使用分页查询、批量操作等,都是 SQL 编写过程中需要注意的细节。

3. 进阶方案:架构优化

当面试官对基础优化知识比较满意时,可能会深入探讨一些架构层面的优化方案。以下是一些常见的架构优化策略:

  • 读写分离: 将读操作和写操作分离到不同的数据库实例,提升数据库的并发处理能力。
  • 分库分表: 将数据分散到多个数据库实例或数据表中,降低单表数据量,提升查询效率。但要权衡其带来的复杂性和维护成本,谨慎使用。
  • 数据冷热分离:根据数据的访问频率和业务重要性,将数据分为冷数据和热数据,冷数据一般存储在存储在低成本、低性能的介质中,热数据高性能存储介质中。
  • 缓存机制: 使用 Redis 等缓存中间件,将热点数据缓存到内存中,减轻数据库压力。这个非常常用,提升效果非常明显,性价比极高!

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com