您的位置:首页 > 汽车 > 新车 > 深圳高端设计装饰公司_网页制作三剑客cs6软件下载_搜索引擎营销的实现方法有哪些_惠州seo网络推广

深圳高端设计装饰公司_网页制作三剑客cs6软件下载_搜索引擎营销的实现方法有哪些_惠州seo网络推广

2024/11/19 1:12:23 来源:https://blog.csdn.net/m0_67647321/article/details/143167339  浏览:    关键词:深圳高端设计装饰公司_网页制作三剑客cs6软件下载_搜索引擎营销的实现方法有哪些_惠州seo网络推广
深圳高端设计装饰公司_网页制作三剑客cs6软件下载_搜索引擎营销的实现方法有哪些_惠州seo网络推广

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


本文给大家带来的教程是将YOLO11的backbone替换为VanillaNet 结构来提取特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

目录

1.论文

2. VanillaNet 代码实现

2.1 将VanillaNet 添加到YOLO11中

2.2 更改init.py文件

2.3 添加yaml文件

2.4 注册模块

2.5 替换函数

2.6 执行程序

3.修改后的网络结构图

4. 完整代码分享

5. GFLOPs

6. 进阶

7.总结


1.论文

论文地址:VanillaNet: the Power of Minimalism in Deep Learning——点击即可跳转

官方代码: 官方代码仓库——点击即可跳转

2. VanillaNet 代码实现

2.1 将VanillaNet 添加到YOLO11中

关键步骤一:将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中

#Copyright (C) 2023. Huawei Technologies Co., Ltd. All rights reserved.#This program is free software; you can redistribute it and/or modify it under the terms of the MIT License.#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MIT License for more details.import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import weight_init, DropPath
import numpy as np__all__ = ['vanillanet_5', 'vanillanet_6', 'vanillanet_7', 'vanillanet_8', 'vanillanet_9', 'vanillanet_10', 'vanillanet_11', 'vanillanet_12', 'vanillanet_13', 'vanillanet_13_x1_5', 'vanillanet_13_x1_5_ada_pool']class activation(nn.ReLU):def __init__(self, dim, act_num=3, deploy=False):super(activation, self).__init__()self.deploy = deployself.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num*2 + 1, act_num*2 + 1))self.bias = Noneself.bn = nn.BatchNorm2d(dim, eps=1e-6)self.dim = dimself.act_num = act_numweight_init.trunc_normal_(self.weight, std=.02)def forward(self, x):if self.deploy:return torch.nn.functional.conv2d(super(activation, self).forward(x), self.weight, self.bias, padding=(self.act_num*2 + 1)//2, groups=self.dim)else:return self.bn(torch.nn.functional.conv2d(super(activation, self).forward(x),self.weight, padding=self.act_num, groups=self.dim))def _fuse_bn_tensor(self, weight, bn):kernel = weightrunning_mean = bn.running_meanrunning_var = bn.running_vargamma = bn.weightbeta = bn.biaseps = bn.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta + (0 - running_mean) * gamma / stddef switch_to_deploy(self):if not self.deploy:kernel, bias = self._fuse_bn_tensor(self.weight, self.bn)self.weight.data = kernelself.bias = torch.nn.Parameter(torch.zeros(self.dim))self.bias.data = biasself.__delattr__('bn')self.deploy = Trueclass VanillaBlock(nn.Module):def __init__(self, dim, dim_out, act_num=3, stride=2, deploy=False, ada_pool=None):super().__init__()self.act_learn = 1self.deploy = deployif self.deploy:self.conv = nn.Conv2d(dim, dim_out, kernel_size=1)else:self.conv1 = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=1),nn.BatchNorm2d(dim, eps=1e-6),)self.conv2 = nn.Sequential(nn.Conv2d(dim, dim_out, kernel_size=1),nn.BatchNorm2d(dim_out, eps=1e-6))if not ada_pool:self.pool = nn.Identity() if stride == 1 else nn.MaxPool2d(stride)else:self.pool = nn.Identity() if stride == 1 else nn.AdaptiveMaxPool2d((ada_pool, ada_pool))self.act = activation(dim_out, act_num)def forward(self, x):if self.deploy:x = self.conv(x)else:x = self.conv1(x)x = torch.nn.functional.leaky_relu(x,self.act_learn)x = self.conv2(x)x = self.pool(x)x = self.act(x)return xdef _fuse_bn_tensor(self, conv, bn):kernel = conv.weightbias = conv.biasrunning_mean = bn.running_meanrunning_var = bn.running_vargamma = bn.weightbeta = bn.biaseps = bn.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta + (bias - running_mean) * gamma / stddef switch_to_deploy(self):if not self.deploy:kernel, bias = self._fuse_bn_tensor(self.conv1[0], self.conv1[1])self.conv1[0].weight.data = kernelself.conv1[0].bias.data = bias# kernel, bias = self.conv2[0].weight.data, self.conv2[0].bias.datakernel, bias = self._fuse_bn_tensor(self.conv2[0], self.conv2[1])self.conv = self.conv2[0]self.conv.weight.data = torch.matmul(kernel.transpose(1,3), self.conv1[0].weight.data.squeeze(3).squeeze(2)).transpose(1,3)self.conv.bias.data = bias + (self.conv1[0].bias.data.view(1,-1,1,1)*kernel).sum(3).sum(2).sum(1)self.__delattr__('conv1')self.__delattr__('conv2')self.act.switch_to_deploy()self.deploy = Trueclass VanillaNet(nn.Module):def __init__(self, in_chans=3, num_classes=1000, dims=[96, 192, 384, 768], drop_rate=0, act_num=3, strides=[2,2,2,1], deploy=False, ada_pool=None, **kwargs):super().__init__()self.deploy = deployif self.deploy:self.stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),activation(dims[0], act_num))else:self.stem1 = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),nn.BatchNorm2d(dims[0], eps=1e-6),)self.stem2 = nn.Sequential(nn.Conv2d(dims[0], dims[0], kernel_size=1, stride=1),nn.BatchNorm2d(dims[0], eps=1e-6),activation(dims[0], act_num))self.act_learn = 1self.stages = nn.ModuleList()for i in range(len(strides)):if not ada_pool:stage = VanillaBlock(dim=dims[i], dim_out=dims[i+1], act_num=act_num, stride=strides[i], deploy=deploy)else:stage = VanillaBlock(dim=dims[i], dim_out=dims[i+1], act_num=act_num, stride=strides[i], deploy=deploy, ada_pool=ada_pool[i])self.stages.append(stage)self.depth = len(strides)self.apply(self._init_weights)self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]def _init_weights(self, m):if isinstance(m, (nn.Conv2d, nn.Linear)):weight_init.trunc_normal_(m.weight, std=.02)nn.init.constant_(m.bias, 0)def change_act(self, m):for i in range(self.depth):self.stages[i].act_learn = mself.act_learn = mdef forward(self, x):res = []if self.deploy:x = self.stem(x)else:x = self.stem1(x)x = torch.nn.functional.leaky_relu(x,self.act_learn)x = self.stem2(x)res.append(x)for i in range(self.depth):x = self.stages[i](x)res.append(x)return resdef _fuse_bn_tensor(self, conv, bn):kernel = conv.weightbias = conv.biasrunning_mean = bn.running_meanrunning_var = bn.running_vargamma = bn.weightbeta = bn.biaseps = bn.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta + (bias - running_mean) * gamma / stddef switch_to_deploy(self):if not self.deploy:self.stem2[2].switch_to_deploy()kernel, bias = self._fuse_bn_tensor(self.stem1[0], self.stem1[1])self.stem1[0].weight.data = kernelself.stem1[0].bias.data = biaskernel, bias = self._fuse_bn_tensor(self.stem2[0], self.stem2[1])self.stem1[0].weight.data = torch.einsum('oi,icjk->ocjk', kernel.squeeze(3).squeeze(2), self.stem1[0].weight.data)self.stem1[0].bias.data = bias + (self.stem1[0].bias.data.view(1,-1,1,1)*kernel).sum(3).sum(2).sum(1)self.stem = torch.nn.Sequential(*[self.stem1[0], self.stem2[2]])self.__delattr__('stem1')self.__delattr__('stem2')for i in range(self.depth):self.stages[i].switch_to_deploy()self.deploy = Truedef update_weight(model_dict, weight_dict):idx, temp_dict = 0, {}for k, v in weight_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vidx += 1model_dict.update(temp_dict)print(f'loading weights... {idx}/{len(model_dict)} items')return model_dictdef vanillanet_5(pretrained='',in_22k=False, **kwargs):model = VanillaNet(dims=[128//2, 256//2, 512//2, 1024//2], strides=[2,2,2], **kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_6(pretrained='',in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 256*4, 512*4, 1024*4, 1024*4], strides=[2,2,2,1], **kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_7(pretrained='',in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,2,1], **kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_8(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,1,2,1], **kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_9(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,1,1,2,1], **kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_10(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],strides=[1,2,2,1,1,1,2,1],**kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_11(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],strides=[1,2,2,1,1,1,1,2,1],**kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_12(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],strides=[1,2,2,1,1,1,1,1,2,1],**kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_13(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],strides=[1,2,2,1,1,1,1,1,1,2,1],**kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_13_x1_5(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*6, 128*6, 256*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 1024*6, 1024*6],strides=[1,2,2,1,1,1,1,1,1,2,1],**kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return modeldef vanillanet_13_x1_5_ada_pool(pretrained='', in_22k=False, **kwargs):model = VanillaNet(dims=[128*6, 128*6, 256*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 1024*6, 1024*6],strides=[1,2,2,1,1,1,1,1,1,2,1],ada_pool=[0,40,20,0,0,0,0,0,0,10,0],**kwargs)if pretrained:weights = torch.load(pretrained)['model_ema']model.load_state_dict(update_weight(model.state_dict(), weights))return model

2.2 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数

然后在下面的__all__中声明函数

2.3 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/11下面新建文件yolo11_VanillaNet .yaml文件,粘贴下面的内容

  • 目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, vanillanet_5, []]  # 4      - [-1, 1, SPPF, [1024, 5]]  # 5                   # YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 3], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 2], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 8], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 5], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[11, 14, 17], 1, Detect, [nc]] # Detect(P3, P4, P5)
  • 语义分割
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, vanillanet_5, []]  # 4      - [-1, 1, SPPF, [1024, 5]]  # 5                   # YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 3], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 2], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 8], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 5], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[11, 14, 17], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)
  • 旋转目标检测
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, vanillanet_5, []]  # 4      - [-1, 1, SPPF, [1024, 5]]  # 5                   # YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 3], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 2], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 8], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 5], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[11, 14, 17], 1, OBB, [nc, 1]] # OBB(P3, P4, P5)

温馨提示:本文只是对yolo11基础上添加模块,如果要对yolo11n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple


# YOLO11n
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channel:1024# YOLO11s
depth_multiple: 0.50  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channel:1024# YOLO11m
depth_multiple: 0.50  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512# YOLO11l 
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.00  # layer channel multiple
max_channel:512 # YOLO11x
depth_multiple: 1.00  # model depth multiple
width_multiple: 1.50 # layer channel multiple
max_channel:512

2.4 注册模块

关键步骤四:在task.py的parse_model函数替换为下面的内容

先在task.py导入函数

然后在task.py文件下找到parse_model这个函数替换

def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)"""Parse a YOLO model.yaml dictionary into a PyTorch model."""import ast# Argsmax_channels = float("inf")nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))if scales:scale = d.get("scale")if not scale:scale = tuple(scales.keys())[0]LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")depth, width, max_channels = scales[scale]if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()if verbose:LOGGER.info(f"{colorstr('activation:')} {act}")  # printif verbose:LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")ch = [ch]is_backbone = Falselayers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, argsm = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m]  # get modulefor j, a in enumerate(args):if isinstance(a, str):with contextlib.suppress(ValueError):args[j] = locals()[a] if a in locals() else ast.literal_eval(a)n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gainif m in {Classify,Conv,ConvTranspose,GhostConv,Bottleneck,GhostBottleneck,SPP,SPPF,C2fPSA,C2PSA,DWConv,Focus,BottleneckCSP,C1,C2,C2f,C3k2,RepNCSPELAN4,ELAN1,ADown,AConv,SPPELAN,C2fAttn,C3,C3TR,C3Ghost,nn.ConvTranspose2d,DWConvTranspose2d,C3x,RepC3,PSA,SCDown,C2fCIB,}:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)if m is C2fAttn:args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channelsargs[2] = int(max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2])  # num headsargs = [c1, c2, *args[1:]]if m in {BottleneckCSP,C1,C2,C2f,C3k2,C2fAttn,C3,C3TR,C3Ghost,C3x,RepC3,C2fPSA,C2fCIB,C2PSA,}:args.insert(2, n)  # number of repeatsn = 1if m is C3k2 and scale in "mlx":  # for M/L/X sizesargs[3] = Trueelif m is AIFI:args = [ch[f], *args]elif m in {HGStem, HGBlock}:c1, cm, c2 = ch[f], args[0], args[1]args = [c1, cm, c2, *args[2:]]if m is HGBlock:args.insert(4, n)  # number of repeatsn = 1elif m in (vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool):m = m(*args)c2 = m.channelelif m is ResNetLayer:c2 = args[1] if args[3] else args[1] * 4elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m in {Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn, v10Detect}:args.append([ch[x] for x in f])if m is Segment:args[2] = make_divisible(min(args[2], max_channels) * width, 8)elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1args.insert(1, [ch[x] for x in f])elif m is CBLinear:c2 = args[0]c1 = ch[f]args = [c1, c2, *args[1:]]elif m is CBFuse:c2 = ch[f[-1]]else:c2 = ch[f]if isinstance(c2, list):is_backbone = Truem_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typem.np = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, m.np  # attach index, 'from' index, type, number paramsif verbose:LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # printsave.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) ifx != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list):ch.extend(c2)for _ in range(5 - len(ch)):ch.insert(0, 0)else:ch.append(c2)return nn.Sequential(*layers), sorted(save)

2.5 替换函数

关键步骤五:在task.py的BaseModel类下的_predict_once函数替换为下面的内容

def _predict_once(self, x, profile=False, visualize=False, embed=None):"""Perform a forward pass through the network.Args:x (torch.Tensor): The input tensor to the model.profile (bool):  Print the computation time of each layer if True, defaults to False.visualize (bool): Save the feature maps of the model if True, defaults to False.embed (list, optional): A list of feature vectors/embeddings to return.Returns:(torch.Tensor): The last output of the model."""y, dt, embeddings = [], [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = (y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f])  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, "backbone"):x = m(x)for _ in range(5 - len(x)):x.insert(0, None)for i_idx, i in enumerate(x):if i_idx in self.save:y.append(i)else:y.append(None)# for i in x:#     if i is not None:#         print(i.size())x = x[-1]else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)if embed and m.i in embed:embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flattenif m.i == max(embed):return torch.unbind(torch.cat(embeddings, 1), dim=0)return x

2.6 执行程序

关键步骤五: 在ultralytics文件中新建train.py,将model的参数路径设置为yolo11_VanillaNet .yaml的路径即可

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Pathif __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/11/yolo11.yaml")  # 你要选择的模型yaml文件地址# Use the modelresults = model.train(data=r"你的数据集的yaml文件地址",epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

   🚀运行程序,如果出现下面的内容则说明添加成功🚀  

                   from  n    params  module                                       arguments0                  -1  1    318592  et  1                  -1  1    394240  ultralytics.nn.modules.block.SPPF            [512, 256, 5]2                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']3             [-1, 3]  1         0  ultralytics.nn.modules.conv.Concat           [1]4                  -1  1    127680  ultralytics.nn.modules.block.C3k2            [512, 128, 1, False]5                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']6             [-1, 2]  1         0  ultralytics.nn.modules.conv.Concat           [1]7                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]8                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]9             [-1, 8]  1         0  ultralytics.nn.modules.conv.Concat           [1]10                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]11                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]12             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]13                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]14        [11, 14, 17]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLO11_VanillaNet summary: 218 layers, 1,987,824 parameters, 1,987,808 gradients, 6.2 GFLOPs

3.修改后的网络结构图

4. 完整代码分享

这个后期补充吧~,先按照步骤来即可

5. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLO11n GFLOPs

改进后的GFLOPs

6. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

7.总结

通过以上的改进方法,我们成功提升了模型的表现。这只是一个开始,未来还有更多优化和技术深挖的空间。在这里,我想隆重向大家推荐我的专栏——<专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅>。这个专栏专注于前沿的深度学习技术,特别是目标检测领域的最新进展,不仅包含对YOLO11的深入解析和改进策略,还会定期更新来自各大顶会(如CVPR、NeurIPS等)的论文复现和实战分享。

为什么订阅我的专栏? ——专栏地址:YOLO11入门 + 改进涨点——点击即可跳转 欢迎订阅

  1. 前沿技术解读:专栏不仅限于YOLO系列的改进,还会涵盖各类主流与新兴网络的最新研究成果,帮助你紧跟技术潮流。

  2. 详尽的实践分享:所有内容实践性也极强。每次更新都会附带代码和具体的改进步骤,保证每位读者都能迅速上手。

  3. 问题互动与答疑:订阅我的专栏后,你将可以随时向我提问,获取及时的答疑

  4. 实时更新,紧跟行业动态:不定期发布来自全球顶会的最新研究方向和复现实验报告,让你时刻走在技术前沿。

专栏适合人群:

  • 对目标检测、YOLO系列网络有深厚兴趣的同学

  • 希望在用YOLO算法写论文的同学

  • 对YOLO算法感兴趣的同学等

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com