您的位置:首页 > 文旅 > 旅游 > 爱未来企业邮箱_怎么做网络推广赚钱_百度搜索榜单_在线工具

爱未来企业邮箱_怎么做网络推广赚钱_百度搜索榜单_在线工具

2024/12/23 8:57:10 来源:https://blog.csdn.net/weixin_46167190/article/details/142598393  浏览:    关键词:爱未来企业邮箱_怎么做网络推广赚钱_百度搜索榜单_在线工具
爱未来企业邮箱_怎么做网络推广赚钱_百度搜索榜单_在线工具

DERT目标检测源码流程图main.py的执行

官网预测脚本

补充官网提供的预测部分的代码信息。

from PIL import Image
import requests
import matplotlib.pyplot as pltimport torch
from torch import nn
from torchvision.models import resnet50
import torchvision.transforms as T
torch.set_grad_enabled(False)class DETRdemo(nn.Module):"""Demo DETR implementation.Demo implementation of DETR in minimal number of lines, with thefollowing differences wrt DETR in the paper:* learned positional encoding (instead of sine)* positional encoding is passed at input (instead of attention)* fc bbox predictor (instead of MLP)The model achieves ~40 AP on COCO val5k and runs at ~28 FPS on Tesla V100.Only batch size 1 supported."""def __init__(self, num_classes, hidden_dim=256, nheads=8,num_encoder_layers=6, num_decoder_layers=6):super().__init__()# create ResNet-50 backboneself.backbone = resnet50()del self.backbone.fc# create conversion layerself.conv = nn.Conv2d(2048, hidden_dim, 1)# create a default PyTorch transformerself.transformer = nn.Transformer(hidden_dim, nheads, num_encoder_layers, num_decoder_layers)# prediction heads, one extra class for predicting non-empty slots# note that in baseline DETR linear_bbox layer is 3-layer MLPself.linear_class = nn.Linear(hidden_dim, num_classes + 1)self.linear_bbox = nn.Linear(hidden_dim, 4)# output positional encodings (object queries)self.query_pos = nn.Parameter(torch.rand(100, hidden_dim))# spatial positional encodings# note that in baseline DETR we use sine positional encodingsself.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))def forward(self, inputs):# propagate inputs through ResNet-50 up to avg-pool layerx = self.backbone.conv1(inputs)x = self.backbone.bn1(x)x = self.backbone.relu(x)x = self.backbone.maxpool(x)x = self.backbone.layer1(x)x = self.backbone.layer2(x)x = self.backbone.layer3(x)x = self.backbone.layer4(x)# convert from 2048 to 256 feature planes for the transformerh = self.conv(x)# construct positional encodingsH, W = h.shape[-2:]pos = torch.cat([ # 张量的顺序进行转换self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),], dim=-1).flatten(0, 1).unsqueeze(1)# propagate through the transformerh = self.transformer(pos + 0.1 * h.flatten(2).permute(2, 0, 1),self.query_pos.unsqueeze(1)).transpose(0, 1)# finally project transformer outputs to class labels and bounding boxesreturn {'pred_logits': self.linear_class(h),'pred_boxes': self.linear_bbox(h).sigmoid()}detr = DETRdemo(num_classes=91)
state_dict = torch.hub.load_state_dict_from_url(url='https://dl.fbaipublicfiles.com/detr/detr_demo-da2a99e9.pth',map_location='cpu', check_hash=True)
detr.load_state_dict(state_dict)
detr.eval();# COCO classes
CLASSES = ['N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus','train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A','stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse','sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack','umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis','snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove','skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass','cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich','orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake','chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A','N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard','cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A','book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier','toothbrush'
]# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]# standard PyTorch mean-std input image normalization
transform = T.Compose([T.Resize(800),T.ToTensor(),T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):x_c, y_c, w, h = x.unbind(1)b = [(x_c - 0.5 * w), (y_c - 0.5 * h),(x_c + 0.5 * w), (y_c + 0.5 * h)]return torch.stack(b, dim=1)def rescale_bboxes(out_bbox, size):img_w, img_h = sizeb = box_cxcywh_to_xyxy(out_bbox)b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)return bdef detect(im, model, transform):# mean-std normalize the input image (batch-size: 1)img = transform(im).unsqueeze(0)# demo model only support by default images with aspect ratio between 0.5 and 2# if you want to use images with an aspect ratio outside this range# rescale your image so that the maximum size is at most 1333 for best resultsassert img.shape[-2] <= 1600 and img.shape[-1] <= 1600, 'demo model only supports images up to 1600 pixels on each side'# propagate through the modeloutputs = model(img)# keep only predictions with 0.7+ confidenceprobas = outputs['pred_logits'].softmax(-1)[0, :, :-1]keep = probas.max(-1).values > 0.7# convert boxes from [0; 1] to image scalesbboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)return probas[keep], bboxes_scaledurl = 'http://images.cocodataset.org/val2017/000000039769.jpg'
# url = "./test.jpg"
# im = Image.open(url)
im = Image.open(requests.get(url, stream=True).raw)scores, boxes = detect(im, detr, transform)def plot_results(pil_img, prob, boxes):plt.figure(figsize=(16, 10))plt.imshow(pil_img)ax = plt.gca()for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), COLORS * 100):ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=c, linewidth=3))cl = p.argmax()text = f'{CLASSES[cl]}: {p[cl]:0.2f}'ax.text(xmin, ymin, text, fontsize=15,bbox=dict(facecolor='yellow', alpha=0.5))plt.axis('off')plt.show()plot_results(im, scores, boxes)

在这里插入图片描述

核心流程图

  1. 整体执行流程概述
  2. 模型构建过程
  3. 前向传播与损失函数

需要代码注释部分可联系,简单原因不在提供代码注释。只关注断点调试得到的流程图信息。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com