- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
- 这次目标本来要达到60%,但是却非常稳定的达到了40%,😢😢😢😢;
- 从上个周末到现在,从最初的13%到现在的60%,自己一个人也学习了不少,体验到了期待到无助,又从无助到期待的循环,一个人查阅论文、修改、跑模型验证,反复验证,在这过程,本来在这过程中想好了很多要写的,但是等到真正写的时候,又突然说不出口了,🤠🤠🤠🤠;
- 最近学校课程多,这周任务又快要结束了,就到后面在不断优化吧,也期待大佬给我提出建议。😢😢😢😢
目标
测试集准确率达到20%
结果
测试集准确率稳定在40%+
没有达到60%+😢😢😢😢😢😢😢😢😢😢😢😢
文章目录
- 1、模型简介
- 2、模型训练与优化
- 1、导入数据
- 1、导入库
- 2、查看数据类型
- 3、数据展示
- 4、数据预处理
- 5、数据加载与数据划分
- 2、构建VGG-16神经网络模型
- 3、模型训练
- 1、构建训练函数
- 2、构建测试集函数
- 3、设置动态学习率
- 4、模型正式训练
- 4、结果展示
- 5、预测
- 6、开始优化
- 7、优化一
- 8、优化二
- 3、总结
1、模型简介
VGG16是一个经典的模型,他在之间广泛用于图像分类的工作,也一直取得了很多人的青睐,它拥有13层卷积,3层池化构成,本文将用VGG16来实现对人脸的识别(本次案例数据1800张)。
VGG16模型结构图如下:
结合本案例,最总优化的模型结构图如下(论文截图):
2、模型训练与优化
1、导入数据
1、导入库
import torch
import numpy as np
import torch.nn as nn
import torchvision
import warnings # 忽略警告
import os, PIL, pathlib warnings.filterwarnings("ignore") #忽略警告信息device = ('cuda' if torch.cuda.is_available() else 'cpu')
device
输出:
'cuda'
2、查看数据类型
获取文件夹下的类别名称
data_dir = './data/'
data_dir = pathlib.Path(data_dir)data_path = data_dir.glob('*')
classnames = [str(path).split("\\")[1] for path in data_path]
classnames
输出:
['Angelina Jolie','Brad Pitt','Denzel Washington','Hugh Jackman','Jennifer Lawrence','Johnny Depp','Kate Winslet','Leonardo DiCaprio','Megan Fox','Natalie Portman','Nicole Kidman','Robert Downey Jr','Sandra Bullock','Scarlett Johansson','Tom Cruise','Tom Hanks','Will Smith']
3、数据展示
import matplotlib.pyplot as plt
from PIL import Image# 文件目录
data_look_dir = './data/AngeLina Jolie/'
# 获得文件名
data_path_list = [f for f in os.listdir(data_look_dir) if f.endswith(('jpg', 'png'))]fig, axes = plt.subplots(2, 8, figsize=(16, 6)) # fig:画板,ases子图# 展示一一部分图片
for ax, img_file in zip(axes.flat, data_path_list):path_name = os.path.join(data_look_dir, img_file) # 拼接文件目录img = Image.open(path_name) # 打开文件ax.imshow(img)ax.axis('off')plt.show()
4、数据预处理
from torchvision import transforms, datasets # 数据预处理,统一格式
data_transform = transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize( mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225] )
])data_all = './data/'total_data = datasets.ImageFolder(root=data_all, transform=data_transform)
5、数据加载与数据划分
# 数据集的划分
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size
train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])
train_data, test_data
输出:(<torch.utils.data.dataset.Subset at 0x2bd8b922fd0>,<torch.utils.data.dataset.Subset at 0x2bd8b922ac0>)
# 动态加载数据
batch_size = 32 train_dl = torch.utils.data.DataLoader(train_data,batch_size=batch_size,shuffle=True,num_workers=4)test_dl = torch.utils.data.DataLoader(test_data,batch_size=batch_size,shuffle=True,num_workers=4)
# 查看处理后图片格式
for format, data in test_dl:print("format: ", format.shape)print("data: ", data)break
format: torch.Size([32, 3, 224, 224])
data: tensor([14, 12, 4, 13, 6, 3, 13, 4, 16, 0, 2, 4, 5, 6, 7, 2, 6, 0,14, 10, 13, 3, 8, 7, 10, 4, 12, 0, 4, 14, 3, 15])
2、构建VGG-16神经网络模型
from torchvision.models import vgg16# 加载模型
model = vgg16(pretrained=False).to(device)# vgg16已经通过大量的模型训练,故不需要参数更新
for param in model.parameters():param.required_grad = False # 禁止梯度更新# 修改全连接层
model.classifier._modules['6'] = nn.Linear(4096, len(classnames))
model.to(device)
model
输出:
VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=17, bias=True))
)
3、模型训练
1、构建训练函数
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)batch_size = len(dataloader)train_acc, train_loss = 0, 0# 模型预测for X, y in dataloader:X, y = X.to(device), y.to(device)# 预测pred = model(X)loss = loss_fn(pred, y)# 梯度更新optimizer.zero_grad()loss.backward()optimizer.step()# 计算损失和准确率train_loss += losstrain_acc += (pred.argmax(1) == y).type(torch.float64).sum().item()# 计算总和train_acc /= sizetrain_loss /= batch_sizereturn train_acc, train_loss
2、构建测试集函数
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)batch_size = len(dataloader)test_acc, test_loss = 0, 0 with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)loss = loss_fn(pred, y)test_loss += loss.item()test_acc += (pred.argmax(1) == y).type(torch.float64).sum().item()test_acc /= size test_loss /= batch_sizereturn test_acc, test_loss
3、设置动态学习率
learn_rate = 1e-4
loss_fn = nn.CrossEntropyLoss()
func = lambda epoch : (0.92 ** (epoch // 2))
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=func)
4、模型正式训练
import copy train_acc = []
train_loss = []
test_acc = []
test_loss = []epoches = 40best_acc = 0 # 最佳学习率for epoch in range(epoches):model.train()epoch_train_acc, epoch_trian_loss = train(train_dl, model, loss_fn, optimizer)# 动态更新学习率scheduler.step()model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳参数模型if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_trian_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 保存当前学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_trian_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件
path = './best_model.pth'
torch.save(model.state_dict(), path)
输出:
Epoch: 1, Train_acc:5.3%, Train_loss:2.835, Test_acc:5.0%, Test_loss:2.838, Lr:1.00E-04
Epoch: 2, Train_acc:6.0%, Train_loss:2.838, Test_acc:4.4%, Test_loss:2.835, Lr:9.20E-05
Epoch: 3, Train_acc:6.0%, Train_loss:2.837, Test_acc:4.4%, Test_loss:2.835, Lr:9.20E-05
Epoch: 4, Train_acc:5.5%, Train_loss:2.837, Test_acc:4.4%, Test_loss:2.835, Lr:8.46E-05
Epoch: 5, Train_acc:5.1%, Train_loss:2.837, Test_acc:4.4%, Test_loss:2.834, Lr:8.46E-05
Epoch: 6, Train_acc:6.6%, Train_loss:2.833, Test_acc:3.9%, Test_loss:2.834, Lr:7.79E-05
Epoch: 7, Train_acc:6.2%, Train_loss:2.836, Test_acc:3.9%, Test_loss:2.831, Lr:7.79E-05
Epoch: 8, Train_acc:6.8%, Train_loss:2.829, Test_acc:3.9%, Test_loss:2.834, Lr:7.16E-05
Epoch: 9, Train_acc:6.4%, Train_loss:2.834, Test_acc:3.9%, Test_loss:2.832, Lr:7.16E-05
Epoch:10, Train_acc:6.7%, Train_loss:2.833, Test_acc:3.9%, Test_loss:2.832, Lr:6.59E-05
Epoch:11, Train_acc:5.6%, Train_loss:2.833, Test_acc:3.9%, Test_loss:2.832, Lr:6.59E-05
Epoch:12, Train_acc:5.8%, Train_loss:2.835, Test_acc:3.9%, Test_loss:2.832, Lr:6.06E-05
Epoch:13, Train_acc:6.2%, Train_loss:2.832, Test_acc:4.2%, Test_loss:2.830, Lr:6.06E-05
Epoch:14, Train_acc:6.7%, Train_loss:2.832, Test_acc:4.2%, Test_loss:2.830, Lr:5.58E-05
Epoch:15, Train_acc:6.2%, Train_loss:2.834, Test_acc:4.2%, Test_loss:2.831, Lr:5.58E-05
Epoch:16, Train_acc:7.4%, Train_loss:2.828, Test_acc:5.0%, Test_loss:2.828, Lr:5.13E-05
Epoch:17, Train_acc:6.9%, Train_loss:2.834, Test_acc:6.1%, Test_loss:2.831, Lr:5.13E-05
Epoch:18, Train_acc:7.1%, Train_loss:2.834, Test_acc:8.1%, Test_loss:2.829, Lr:4.72E-05
Epoch:19, Train_acc:6.7%, Train_loss:2.833, Test_acc:8.9%, Test_loss:2.829, Lr:4.72E-05
Epoch:20, Train_acc:7.5%, Train_loss:2.829, Test_acc:9.2%, Test_loss:2.827, Lr:4.34E-05
Epoch:21, Train_acc:8.3%, Train_loss:2.831, Test_acc:11.1%, Test_loss:2.828, Lr:4.34E-05
Epoch:22, Train_acc:6.2%, Train_loss:2.830, Test_acc:11.7%, Test_loss:2.828, Lr:4.00E-05
Epoch:23, Train_acc:8.5%, Train_loss:2.828, Test_acc:12.5%, Test_loss:2.829, Lr:4.00E-05
Epoch:24, Train_acc:7.3%, Train_loss:2.830, Test_acc:11.9%, Test_loss:2.827, Lr:3.68E-05
Epoch:25, Train_acc:8.4%, Train_loss:2.827, Test_acc:11.9%, Test_loss:2.828, Lr:3.68E-05
Epoch:26, Train_acc:8.5%, Train_loss:2.830, Test_acc:12.8%, Test_loss:2.828, Lr:3.38E-05
Epoch:27, Train_acc:6.9%, Train_loss:2.831, Test_acc:13.1%, Test_loss:2.828, Lr:3.38E-05
Epoch:28, Train_acc:7.8%, Train_loss:2.828, Test_acc:13.1%, Test_loss:2.828, Lr:3.11E-05
Epoch:29, Train_acc:7.8%, Train_loss:2.826, Test_acc:13.1%, Test_loss:2.828, Lr:3.11E-05
Epoch:30, Train_acc:6.6%, Train_loss:2.831, Test_acc:13.1%, Test_loss:2.827, Lr:2.86E-05
Epoch:31, Train_acc:8.4%, Train_loss:2.828, Test_acc:13.1%, Test_loss:2.828, Lr:2.86E-05
Epoch:32, Train_acc:9.4%, Train_loss:2.828, Test_acc:13.1%, Test_loss:2.829, Lr:2.63E-05
Epoch:33, Train_acc:9.1%, Train_loss:2.829, Test_acc:13.1%, Test_loss:2.826, Lr:2.63E-05
Epoch:34, Train_acc:8.2%, Train_loss:2.828, Test_acc:13.1%, Test_loss:2.826, Lr:2.42E-05
Epoch:35, Train_acc:9.8%, Train_loss:2.829, Test_acc:13.1%, Test_loss:2.827, Lr:2.42E-05
Epoch:36, Train_acc:7.9%, Train_loss:2.827, Test_acc:13.1%, Test_loss:2.826, Lr:2.23E-05
Epoch:37, Train_acc:9.4%, Train_loss:2.827, Test_acc:13.1%, Test_loss:2.825, Lr:2.23E-05
Epoch:38, Train_acc:8.2%, Train_loss:2.829, Test_acc:13.1%, Test_loss:2.826, Lr:2.05E-05
Epoch:39, Train_acc:8.8%, Train_loss:2.827, Test_acc:13.1%, Test_loss:2.827, Lr:2.05E-05
Epoch:40, Train_acc:7.6%, Train_loss:2.826, Test_acc:13.1%, Test_loss:2.824, Lr:1.89E-05
不知道为什么,有时候这里train_loss还存储在GPU中,故需要转换:
if isinstance(train_loss, torch.Tensor) and train_loss.device.type == 'cuda':train_loss = train_loss.cpu()
# 转换
train_loss_cpu = [t.detach().cpu().numpy() for t in train_loss if isinstance(t, torch.Tensor)]# 重新开始
train_loss = np.array(train_loss_cpu)
4、结果展示
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率plt.figure(figsize=(12, 3))epoch_range = range(epoches)plt.subplot(1, 2, 1)
plt.plot(epoch_range, train_acc, label='Train Accurary')
plt.plot(epoch_range, test_acc, label='Test Accurary')
plt.title('Accurary')
plt.legend(loc='lower right')plt.subplot(1, 2, 2)
plt.plot(epoch_range, train_loss, label='Train Loss')
plt.plot(epoch_range, test_loss, label='Test Loss')
plt.title('Loss')
plt.legend(loc='upper right')plt.show()
5、预测
from PIL import Image classes = list(total_data.class_to_idx) def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB') # RGB格式打开plt.imshow(test_img) # 展示预测图片# 压缩图片,更好训练test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_, pred = torch.max(output, 1)pred_class = classes[pred]print('预测结果:', pred_class)
predict_one_image('./data/Angelina Jolie/001_fe3347c0.jpg', model, data_transform, classes)
预测结果: Scarlett Johansson
6、开始优化
本次实验总结:
-
准确率:
- 训练集:刚开始极低,后面更是一直不变
- 测试集:虽然有逐步上升趋势,但是却一直很低
-
损失率:
- 测试集和训练集的损失率变化大差不差,都是逐渐减低,但是降低极少,不到0.1,效果不好
-
最后:总的来说,直接调用VGG的模型,跑出来的效果极差
7、优化一
通过查阅论文、相关博客,最后对以上模型进行了以下优化:
-
全连接层:减少层数,降低神经元个数,添加Dropout层,修改代码如下:
-
model.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 1024),nn.ReLU(inplace=True),nn.Dropout(0.5,inplace=False),nn.Linear(1024,512),nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(512,len(classnames))) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
-
学习率:由于在模型训练中经常出现准确率不变的情况,故降低学习率,1e-4 --> 1e-3,同时变小自动调整学习率速度,0.88 ** (epoch // 2)
-
优化器:通过查阅论发现优化器不同也会导致不同结果,实际也得到了验证,SGD—>Adam
-
图像增强:由于数据量少,故对图像进行随机旋转,以增强数据
最后,通过训练,结果如图:
- 效果比上一个模型好很多,训练集准确率来到了40%,但是在后面出现了一个现象,就是训练集准确率一直升高,达到了90%以上,但是测试集准确率却一直没有怎么变化,所以,就出现了到后面测试集的损失值上升的趋势,模型不稳定。
8、优化二
后面继续查阅论文,最后索性,将全部模型进行修改,添加BN层、将激活函数变成LeakyReLU,同时减少全连接层的数量,最后模型效果得到了稳定的提升,但是训练集和测试集的准确率上升一直变得很缓慢,上升不去,但是相比于优化一来说,效果好了很多,结果图如下:
优化代码:
class Work_Net(nn.Module):def __init__(self):super(Work_Net, self).__init__()# Block1self.block1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.BatchNorm2d(64), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.BatchNorm2d(64), # 1、添加BN层nn.LeakyReLU(negative_slope=0.1), # 2、修改激活函数nn.MaxPool2d(kernel_size=2, stride=2))# Block 2self.block2 = nn.Sequential(nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.BatchNorm2d(128), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.BatchNorm2d(128), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.MaxPool2d(kernel_size=2, stride=2) )# Block3self.block3 = nn.Sequential(nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.BatchNorm2d(256), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.BatchNorm2d(256), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.BatchNorm2d(256), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.MaxPool2d(kernel_size=2, stride=2))# Block 4self.block4 = nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.BatchNorm2d(512), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.BatchNorm2d(512), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.BatchNorm2d(512), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.MaxPool2d(kernel_size=2, stride=2))# Block5self.block5 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.BatchNorm2d(512), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.BatchNorm2d(512), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.BatchNorm2d(512), # 1、添加BN层nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.MaxPool2d(kernel_size=2, stride=2))# Block6self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 1024),nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Dropout(0.5),nn.Linear(1024, 512),nn.LeakyReLU(negative_slope=0.01), # 2、修改激活函数nn.Dropout(0.5),nn.Linear(512, len(classnames)))def forward(self, x):x = self.block1(x)x = self.block2(x)x = self.block3(x)x = self.block4(x)x = self.block5(x)x = x.view(x.size(0), -1)x = self.classifier(x)return x
3、总结
这一次虽然没有达到目标(测试集准确率60%),但是对深度学习的概念有了更加清晰的认识:
- 全连接层:全连接层是通过CNN训练得到的结果后,将训练结果进行展开,然后根据目标类型进行分类,如果全连接层展开很大的话,降低神经元数量,增加Dropout层,可以防止过拟合,防止出现测试集、训练集的准确率或者损失率一直不变的情况;
- 激活函数:常用的激活函数主要是ReLU,但是在数据量少的时候也可以尝试用LeaykReLU,考虑特征值计算的时候出现复数的情况;
- 优化器: 不同优化器可能导致不同的效果,需要结合数据运算的效果来选取;
- 学习率:过大的学习率会收敛过快,提取不到有效的信息,但是学习率过小,极容易出现训练集、测试集的准确率或者学习率不变的情况;
- 数据增强:数据量少的时候可以通过数据增强,可以通过
transforms.Compose
以增加数据