您的位置:首页 > 文旅 > 旅游 > 基于环形拓扑的多目标粒子群优化算法(MO_Ring_PSO_SCD)求解无人机三维路径规划(MATLAB代码)

基于环形拓扑的多目标粒子群优化算法(MO_Ring_PSO_SCD)求解无人机三维路径规划(MATLAB代码)

2024/12/23 9:28:36 来源:https://blog.csdn.net/weixin_46204734/article/details/140889295  浏览:    关键词:基于环形拓扑的多目标粒子群优化算法(MO_Ring_PSO_SCD)求解无人机三维路径规划(MATLAB代码)

一、无人机多目标优化模型

无人机三维路径规划是无人机在执行任务过程中的非常关键的环节,无人机三维路径规划的主要目的是在满足任务需求和自主飞行约束的基础上,计算出发点和目标点之间的最佳航路。

1.1路径成本

无人机三维路径规划的首要目标是寻找起飞点和目标点之间最短路程的飞行路径方案。一般地,记无人机的飞行路径点为 W i j = ( x i j , y i j , z i j ) W_{i j}=\left(x_{i j}, y_{i j}, z_{i j}\right) Wij=(xij,yij,zij)即在第 i i i 条飞行路径中第 j j j个路径点的无人机三维空间位置,则整条飞行路径 X i X_{i} Xi 可表示为包含 n n n 个路径点的三维数组。将 2 个路径点之间的欧氏距离记作路径段 ∥ W i j W i , j + 1 → ∥ \left\|\overrightarrow{W_{i j} W_{i, j+1}}\right\| WijWi,j+1 ,则与无人机飞行路径成本函数 F 1 F_{1} F1 为:
F 1 ( X i ) = ∑ j = 1 n − 1 ∥ W i j W i , j + 1 → ∥ F_{1}\left(X_{i}\right)=\sum_{j=1}^{n-1}\left\|\overrightarrow{W_{i j} W_{i, j+1}}\right\| F1(Xi)=j=1n1 WijWi,j+1

1.2障碍物威胁成本

无人机通过躲避障碍物来确保安全作业航迹。设定障碍物威胁区为圆柱体形式,其投影如下图所示,记圆柱体中心坐标为 C k C_{k} Ck,半径为 R k R_{k} Rk,则无人机的避障威胁成本与其路径段 ∥ W i j W i , j + 1 → ∥ \left\|\overrightarrow{W_{i j} W_{i, j+1}}\right\| WijWi,j+1 和障碍物中心 C k C_{k} Ck的距离 d k d_{k} dk 成反比。

在这里插入图片描述

将飞行环境下的障碍物威胁区集合记作 T T T,则与无人机避障威胁相关的成本函数 F 2 F_{2} F2为:
F 2 ( X i ) = ∑ j = 1 n − 1 ∑ k = 1 K T k ( W i j W i , j + 1 → ) F_{2}\left(X_{i}\right)=\sum_{j=1}^{n-1} \sum_{k=1}^{K} T_{k}\left(\overrightarrow{W_{i j} W_{i, j+1}}\right) F2(Xi)=j=1n1k=1KTk(WijWi,j+1 )
其中:
T k ( W i j W i , j + 1 → ) = { 0 ( d k > R k ) ( R k / d k ) ( 0 < d k < R k ) ∞ ( d k = 0 ) T_{k}\left(\overrightarrow{W_{i j} W_{i, j+1}}\right)=\left\{\begin{array}{ll} 0 & \left(d_{k}>R_{k}\right) \\ \left(R_{k}/d_{k}\right) & \left(0<d_{k}<R_{k}\right) \\ \infty & \left(d_{k}=0\right) \end{array}\right. Tk(WijWi,j+1 )= 0(Rk/dk)(dk>Rk)(0<dk<Rk)(dk=0)

1.3飞行高度威胁成本

无人机的飞行高度通常受到最小高度 h m i n h_{min} hmin 和最大高度 h m a x h_{max} hmax 的约束限制,如下图 所示,其中 T i j T_{ij} Tij 为地形的高度, Z i j Z_{ij} Zij为无人机相对于海平面的高度。
在这里插入图片描述

将无人机在路径点 W i j W_{ij} Wij处距离基准地形地面的高度记作 h i j h_{ij} hij,即 Z i j Z_{ij} Zij T i j T_{ij} Tij 的差,则与无人机当前路径点 W i j W_{ij} Wij相关的成本函数 H i j H_{ij} Hij 为:
H i j = { γ h ( h i j − h max ⁡ ) ( h i j > h max ⁡ ) 0 ( h min ⁡ < h i j < h max ⁡ ) γ h ( h min ⁡ − h i j ) ( 0 < h i j < h min ⁡ ) ∞ ( h i j < 0 ) H_{i j}=\left\{\begin{array}{ll} \gamma_{h}\left(h_{i j}-h_{\max }\right) & \left(h_{i j}>h_{\max }\right) \\ 0 & \left(h_{\min }<h_{i j}<h_{\max }\right) \\ \gamma_{h}\left(h_{\min }-h_{i j}\right) & \left(0<h_{i j}<h_{\min }\right) \\ \infty & \left(h_{i j}<0\right) \end{array}\right. Hij= γh(hijhmax)0γh(hminhij)(hij>hmax)(hmin<hij<hmax)(0<hij<hmin)(hij<0)
同时,将无人机飞行高度超出约束限制条件的惩罚系数记作 γ h γ_{h} γh,则与无人机飞行路径相关的成本函数 F 3 F_{3} F3为:
F 3 ( X i ) = ∑ j = 1 n H i j F_{3}\left(X_{i}\right)=\sum_{j=1}^{n} H_{i j} F3(Xi)=j=1nHij

1.4飞行转角威胁成本

无人机的飞行转角控制参数主要包括水平转弯角和竖直俯仰角,这 2 个参数变量必须符合无人机的实际转角约束限制,否则航迹规划模型无法生成具有可行性的飞行路径。如下图所示, ∥ W i j W i , j + 1 → ∥ \left\|\overrightarrow{W_{i j} W_{i, j+1}}\right\| WijWi,j+1 ∥ W i j + 1 W i , j + 2 → ∥ \left\|\overrightarrow{W_{i j+1} W_{i, j+2}}\right\| Wij+1Wi,j+2 表示无人机飞行路径中的 2 个连续路径段, W i j ′ W i , j + 1 ′ → \overrightarrow{W_{i j}^{\prime} W_{i, j+1}^{\prime}} WijWi,j+1 W i j + 1 ′ W i , j + 2 ′ → \overrightarrow{W_{i j+1}^{\prime} W_{i, j+2}^{\prime}} Wij+1Wi,j+2 是其在xoy 平面的投影。
在这里插入图片描述

记𝒌为轴正方向的单位向量,则 W i j + 1 ′ W i , j + 2 ′ → \overrightarrow{W_{i j+1}^{\prime} W_{i, j+2}^{\prime}} Wij+1Wi,j+2 的计算式和水平转弯角 α i j α_{ij} αij、竖直俯仰角 β i , j + 1 β_{i,j+1} βi,j+1 计算式为:
W i j ′ W i , j + 1 ′ → = k × ( W i j W i , j + 1 → × k ) α i j = arctan ⁡ ( W i j ′ W i , j + 1 ′ → × W i , j + 1 ′ W i , j + 2 ′ ‾ W i j ′ W i , j + 1 ′ → ⋅ W i , j + 1 ′ W i , j + 2 ′ ‾ ) β i j = arctan ⁡ ( z i , j + 1 − z i j ∥ W i j ′ W i , j + 1 ′ → ∥ ) \begin{array}{c} \overrightarrow{W_{i j}^{\prime} W_{i, j+1}^{\prime}}=\boldsymbol{k} \times\left(\overrightarrow{W_{i j} W_{i, j+1}} \times \boldsymbol{k}\right) \\ \alpha_{i j}=\arctan \left(\frac{\overrightarrow{W_{i j}^{\prime} W_{i, j+1}^{\prime}} \times \overline{W_{i, j+1}^{\prime} W_{i, j+2}^{\prime}}}{\overrightarrow{W_{i j}^{\prime} W_{i, j+1}^{\prime}} \cdot \overline{W_{i, j+1}^{\prime} W_{i, j+2}^{\prime}}}\right) \\ \beta_{i j}=\arctan \left(\frac{z_{i, j+1}-z_{i j}}{\left\|\overrightarrow{W_{i j}^{\prime} W_{i, j+1}^{\prime}}\right\|}\right) \end{array} WijWi,j+1 =k×(WijWi,j+1 ×k)αij=arctan(WijWi,j+1 Wi,j+1Wi,j+2WijWi,j+1 ×Wi,j+1Wi,j+2)βij=arctan WijWi,j+1 zi,j+1zij
同时,将无人机的水平转弯角和竖直俯仰角超出约束限制条件的惩罚系数分别记作 a 1 = 1 a_{1}=1 a1=1 a 2 = 1 a_{2}=1 a2=1,则与无人机飞行转角相关的成本函数 F 4 F_{4} F4 为:
F 4 ( X i ) = a 1 ∑ j = 1 n − 2 α i j + a 2 ∑ j = 1 n − 1 ∣ β i j − β i , j − 1 ∣ F_{4}\left(X_{i}\right)=a_{1} \sum_{j=1}^{n-2} \alpha_{i j}+a_{2} \sum_{j=1}^{n-1}\left|\beta_{i j}-\beta_{i, j-1}\right| F4(Xi)=a1j=1n2αij+a2j=1n1βijβi,j1

1.5无人机三维路径规划的目标函数

综合考虑与无人机飞行路径 X i X_{i} Xi 相关的最短路径成本、最小威胁成本,以及飞行高度成本和飞行转角成本等限制,基于多因素约束的多目标函数构建如下:其中第一个目标函数 f 1 f_{1} f1为最短路径成本,第二个目标函数 f 2 f_{2} f2为最小威胁成本,为障碍物威胁成本、飞行高度威胁成本和飞行转角威胁成本的总和,具体定义如下为:
f 1 ( X i ) = F 1 ( X i ) f_{1}\left(X_{i}\right)=F_{1}\left(X_{i}\right) f1(Xi)=F1(Xi)
f 2 ( X i ) = F 2 ( X i ) + F 3 ( X i ) + F 4 ( X i ) f_{2}\left(X_{i}\right)=F_{2}\left(X_{i}\right)+F_{3}\left(X_{i}\right)+F_{4}\left(X_{i}\right) f2(Xi)=F2(Xi)+F3(Xi)+F4(Xi)

参考文献:
[1]吕石磊,范仁杰,李震,陈嘉鸿,谢家兴.基于改进蝙蝠算法和圆柱坐标系的农业无人机航迹规划[J].农业机械学报:1-19

[2]褚宏悦,易军凯.无人机安全路径规划的混沌粒子群优化研究[J].控制工程:1-8

[3]MD Phung, Ha Q P . Safety-enhanced UAV Path Planning with Spherical Vector-based Particle Swarm Optimization: 2021.

[4]陈明强,李奇峰,冯树娟等.基于改进粒子群算法的无人机三维航迹规划[J].无线电工程,2023,53(02):394-400.

[5]徐建新,孙纬,马超.基于改进粒子群算法的无人机三维路径规划[J].电光与控制:1-10

[6]骆文冠,于小兵.基于强化学习布谷鸟搜索算法的应急无人机路径规划[J].灾害学:1-10

[7]陈先亮,黄元君,范勤勤.基于多模态多目标进化算法的无人机三维路径规划[J].火力与指挥控制, 2023(11):32-39.

二、 MO_Ring_PSO_SCD介绍

基于环形拓扑的多目标粒子群优化算法(A Multi-objective Particle Swarm Optimizer Using Ring Topology,MO_Ring_PSO_SCD)是一种为解决多模态多目标优化问题而设计的粒子群优化算法。

MO_Ring_PSO_SCD算法描述

该算法旨在解决可能具有多个对应相同目标函数值的Pareto最优解的多模态多目标优化问题。其核心特点包括:

  • 环形拓扑结构:算法使用环形拓扑结构来促进种群内个体间的稳定竞争,有助于发现并维持更多的Pareto最优解。
  • 特殊拥挤距离:在决策空间和目标空间中采用了特殊的拥挤距离度量,以评估和保持解的多样性。

MO_Ring_PSO_SCD算法流程

  1. 初始化:粒子群初始化,每个粒子随机分配在解空间中。
  2. 评估:计算每个粒子的目标函数值,并根据Pareto支配关系进行评估。
  3. 更新粒子速度和位置:根据环形拓扑结构和拥挤距离信息更新粒子的速度和位置。
  4. 维护多样性:通过特殊拥挤距离的计算方法,该算法不仅定位大量Pareto最优解,而且在决策和目标空间中获得良好分布。
  5. 迭代:重复上述步骤,直到满足停止条件或达到最大迭代次数。

参考文献:
[1] Yue C , Qu B , Liang J .A Multi-objective Particle Swarm Optimizer Using Ring Topology for Solving Multimodal Multi-objective Problems[J].IEEE Transactions on Evolutionary Computation, 2017:805-817.DOI:10.1109/TEVC.2017.2754271.

三、MO_Ring_PSO_SCD求解无人机路径规划

3.1部分代码

close all
clear
clc
dbstop if all error
addpath("./MO_Ring_PSO_SCD/")
global model
model = CreateModel(); % 创建模型
MultiObj= fun_info();%获取无人机模型信息
params.maxgen=100;  % 最大迭代次数
params.Np=100;      % 种群大小
params.Nr=200;      %外部存档大小(不得小于种群大小)
[Xbest,Fbest] = MO_Ring_PSO_SCD(params,MultiObj);

3.2部分结果

MO_Ring_PSO_SCD求解得到的pareto前沿图:

在这里插入图片描述

MO_Ring_PSO_SCD求解得到的路径成本最小和威胁成本最小的路径:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

MO_Ring_PSO_SCD求解得到的所有无人机路径图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

见下方联系方式

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com