您的位置:首页 > 文旅 > 美景 > 哈尔滨网页设计模板网站_加工设备网_视频号推广方法_深圳小程序开发公司

哈尔滨网页设计模板网站_加工设备网_视频号推广方法_深圳小程序开发公司

2025/4/3 10:55:24 来源:https://blog.csdn.net/m0_37739193/article/details/146535575  浏览:    关键词:哈尔滨网页设计模板网站_加工设备网_视频号推广方法_深圳小程序开发公司
哈尔滨网页设计模板网站_加工设备网_视频号推广方法_深圳小程序开发公司

文章目录

      • 一、安装中文分词插件
        • Linux安装7.14.1版本:
          • 测试1:ik_smart
          • 测试2:ik_max_word
      • 二、es内置的分词器:
      • 三、拼音插件安装以及(IK+pinyin使用)
        • 配置 IK + pinyin 分词配置

一、安装中文分词插件

IK Analysis for Elasticsearch是开源社区比较流行的中文分词插件
官网:https://github.com/medcl/elasticsearch-analysis-ik

  本来想用这两种方法安装:

.\bin\elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v5.4.2/elasticsearch-analysis-ik-5.4.2.zip
bin\elasticsearch-plugin install file:///C:\Users\jk\Desktop\elasticsearch-analysis-ik-5.4.2.zip

  但是却总是报错:

ERROR: `elasticsearch` directory is missing in the plugin zip

  后来只能用了这种方法:在Elasticsearch安装目录下的文件夹plugins中新建文件夹ik,将elasticsearch-analysis-ik-5.4.2.zip解压到这里即可,其实官网里已经说明了低于5.5.1版本的用解压的方式安装了:
在这里插入图片描述
参考:Elasticsearch5.x安装IK分词器以及使用

Linux安装7.14.1版本:

下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases

[hadoop@node01 ~]$ elasticsearch-7.14.1/bin/elasticsearch-plugin install file:///mnt/elasticsearch-analysis-ik-7.14.1.zip

在这里插入图片描述
ik_smart:会做最粗粒度的拆分
ik_max_word:会将文本做最细粒度的拆分。

测试1:ik_smart
GET /_analyze
{"analyzer": "ik_smart","text":"中华人民共和国"
}

结果:

{"tokens": [{"token": "中华人民共和国","start_offset": 0,"end_offset": 7,"type": "CN_WORD","position": 0}]
}
测试2:ik_max_word
GET /_analyze
{"analyzer": "ik_max_word","text":"中华人民共和国"
}

结果:

{"tokens": [{"token": "中华人民共和国","start_offset": 0,"end_offset": 7,"type": "CN_WORD","position": 0},{"token": "中华人民","start_offset": 0,"end_offset": 4,"type": "CN_WORD","position": 1},{"token": "中华","start_offset": 0,"end_offset": 2,"type": "CN_WORD","position": 2},{"token": "华人","start_offset": 1,"end_offset": 3,"type": "CN_WORD","position": 3},{"token": "人民共和国","start_offset": 2,"end_offset": 7,"type": "CN_WORD","position": 4},{"token": "人民","start_offset": 2,"end_offset": 4,"type": "CN_WORD","position": 5},{"token": "共和国","start_offset": 4,"end_offset": 7,"type": "CN_WORD","position": 6},{"token": "共和","start_offset": 4,"end_offset": 6,"type": "CN_WORD","position": 7},{"token": "国","start_offset": 6,"end_offset": 7,"type": "CN_CHAR","position": 8}]
}
GET /_analyze
{"analyzer": "ik_max_word","text":"I love you"
}
结果:
{"tokens" : [{"token" : "i","start_offset" : 0,"end_offset" : 1,"type" : "ENGLISH","position" : 0},{"token" : "love","start_offset" : 2,"end_offset" : 6,"type" : "ENGLISH","position" : 1},{"token" : "you","start_offset" : 7,"end_offset" : 10,"type" : "ENGLISH","position" : 2}]
}

参考:https://blog.csdn.net/wenxindiaolong061/article/details/82562450

二、es内置的分词器:

  • standard analyzer
  • simple analyzer
  • whitespace analyzer
  • language analyzer(特定的语言的分词器)

例句:Set the shape to semi-transparent by calling set_trans(5)
不同分词器的分词结果:

  • standard analyzer:set, the, shape, to, semi, transparent, by, calling, set_trans, 5(默认的是standard)
  • simple analyzer:set, the, shape, to, semi, transparent, by, calling, set, trans
  • whitespace analyzer:Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
  • language analyzer(特定的语言的分词器,比如说,english,英语分词器):set, shape, semi, transpar, call, set_tran, 5

分词器测试:

GET /_analyze
{"analyzer": "standard","text":"The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone."
}

结果:

  "tokens" : [{"token" : "the","start_offset" : 0,"end_offset" : 3,"type" : "<ALPHANUM>","position" : 0},{"token" : "2","start_offset" : 4,"end_offset" : 5,"type" : "<NUM>","position" : 1},{"token" : "quick","start_offset" : 6,"end_offset" : 11,"type" : "<ALPHANUM>","position" : 2},{"token" : "brown","start_offset" : 12,"end_offset" : 17,"type" : "<ALPHANUM>","position" : 3},{"token" : "foxes","start_offset" : 18,"end_offset" : 23,"type" : "<ALPHANUM>","position" : 4},{"token" : "jumped","start_offset" : 24,"end_offset" : 30,"type" : "<ALPHANUM>","position" : 5},{"token" : "over","start_offset" : 31,"end_offset" : 35,"type" : "<ALPHANUM>","position" : 6},{"token" : "the","start_offset" : 36,"end_offset" : 39,"type" : "<ALPHANUM>","position" : 7},{"token" : "lazy","start_offset" : 40,"end_offset" : 44,"type" : "<ALPHANUM>","position" : 8},{"token" : "dog’s","start_offset" : 45,"end_offset" : 50,"type" : "<ALPHANUM>","position" : 9},{"token" : "bone","start_offset" : 51,"end_offset" : 55,"type" : "<ALPHANUM>","position" : 10}]
}

  可以看出是按照空格、非字母的方式对输入的文本进行了转换,比如对 Java 做了转小写,对一些停用词也没有去掉,比如 in,其中 token 为分词结果;start_offset 为起始偏移;end_offset 为结束偏移;position 为分词位置。可配置项

选项描述
max_token_length最大令牌长度。如果看到令牌超过此长度,则将其max_token_length间隔分割。默认为255。
stopwords预定义的停用词列表,例如english或包含停用词列表的数组。默认为none。
stopwords_path包含停用词的文件的路径。
COPY{"settings": {"analysis": {"analyzer": {"my_english_analyzer": {"type": "standard","max_token_length": 5,"stopwords": "_english_"}}}}
}

  不同的 Analyzer 会有不同的分词结果,内置的分词器有以下几种,基本上内置的 Analyzer 包括 Language Analyzers 在内,对中文的分词都不够友好,中文分词需要安装其它 Analyzer

分析器描述分词对象结果
standard标准分析器是默认的分析器,如果没有指定,则使用该分析器。它提供了基于文法的标记化(基于 Unicode 文本分割算法,如 Unicode 标准附件 # 29所规定) ,并且对大多数语言都有效。The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog’s, bone ]
simple简单分析器将文本分解为任何非字母字符的标记,如数字、空格、连字符和撇号、放弃非字母字符,并将大写字母更改为小写字母。The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.[ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
whitespace空格分析器在遇到空白字符时将文本分解为术语The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.[ The, 2, QUICK, Brown-Foxes, jumped, over, the, lazy, dog’s, bone. ]
stop停止分析器与简单分析器相同,但增加了删除停止字的支持。默认使用的是 english 停止词。The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.[ quick, brown, foxes, jumped, over, lazy, dog, s, bone ]
keyword不分词,把整个字段当做一个整体返回The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.[The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.]
pattern模式分析器使用正则表达式将文本拆分为术语。正则表达式应该匹配令牌分隔符,而不是令牌本身。正则表达式默认为 w+ (或所有非单词字符)。The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
多种西语系 arabic, armenian, basque, bengali, brazilian, bulgarian, catalan, cjk, czech, danish, dutch, english等等一组旨在分析特定语言文本的分析程序。

  中文分词器最简单的是ik分词器,还有jieba分词,哈工大分词器等

分析器描述分词对象结果
ik_smartik分词器中的简单分词器,支持自定义字典,远程字典学如逆水行舟,不进则退[学如逆水行舟,不进则退]
ik_max_wordik_分词器的全量分词器,支持自定义字典,远程字典学如逆水行舟,不进则退[学如逆水行舟,学如逆水,逆水行舟,逆水,行舟,不进则退,不进,则,退]

参考:
【9种】ElasticSearch分词器详解,一文get!!!| 博学谷狂野架构师
[转]中英文停止词表(stopword)

三、拼音插件安装以及(IK+pinyin使用)

  有时在淘宝搜索商品的时候,会发现使用汉字、拼音、或者拼音混合汉字都会出来想要的搜索结果,其实是通过拼音搜索插件实现的。

  地址:https://github.com/infinilabs/analysis-pinyin/releases

  选择对应的版本,版本与 ES 版本一致,建议直接下载编译后的 zip 包;若是下载源码包,则需要自己编码打包 mvn clean package 生成 zip 包。联网安装:elasticsearch-7.14.1/bin/elasticsearch-plugin install https://get.infini.cloud/elasticsearch/analysis-pinyin/7.14.1

在这里插入图片描述
  使用自定义拼音分词器创建索引:

PUT /medcl/ 
{"settings" : {"analysis" : {"analyzer" : {"pinyin_analyzer" : {"tokenizer" : "my_pinyin"}},"tokenizer" : {"my_pinyin" : {"type" : "pinyin","keep_separate_first_letter" : false,"keep_full_pinyin" : true,"keep_original" : true,"limit_first_letter_length" : 16,"lowercase" : true,"remove_duplicated_term" : true}}}}
}

  测试:

POST medcl/_analyze
{"analyzer": "pinyin_analyzer","text": "刘德华"
}

  结果:

{"tokens" : [{"token" : "liu","start_offset" : 0,"end_offset" : 0,"type" : "word","position" : 0},{"token" : "刘德华","start_offset" : 0,"end_offset" : 0,"type" : "word","position" : 0},{"token" : "ldh","start_offset" : 0,"end_offset" : 0,"type" : "word","position" : 0},{"token" : "de","start_offset" : 0,"end_offset" : 0,"type" : "word","position" : 1},{"token" : "hua","start_offset" : 0,"end_offset" : 0,"type" : "word","position" : 2}]
}
配置 IK + pinyin 分词配置

  settings 设置:

curl -XPUT "http://localhost:9200/medcl/" -d'
{"index": {"analysis": {"analyzer": {"default": {"tokenizer": "ik_max_word"},"pinyin_analyzer": {"tokenizer": "shopmall_pinyin"}},"tokenizer": {"shopmall_pinyin": {"keep_joined_full_pinyin": "true","keep_first_letter": "true","keep_separate_first_letter": "false","lowercase": "true","type": "pinyin","limit_first_letter_length": "16","keep_original": "true","keep_full_pinyin": "true"}}}}
}'

  创建 mapping:

curl -XPOST http://localhost:9200/medcl/folks/_mapping -d'
{"folks": {"properties": {"name": {"type": "text","analyzer": "ik_max_word","include_in_all": true,"fields": {"pinyin": {"type": "text","analyzer": "pinyin_analyzer"}}}}}
}'

  添加测试文档:

curl -XPOST http://localhost:9200/medcl/folks/ -d'{"name":"刘德华"}'curl -XPOST http://localhost:9200/medcl/folks/ -d'{"name":"中华人民共和国国歌"}'

  拼音分词效果:

curl -XPOST "http://localhost:9200/medcl/folks/_search?q=name.pinyin:liu"curl -XPOST "http://localhost:9200/medcl/folks/_search?q=name.pinyin:de"curl -XPOST "http://localhost:9200/medcl/folks/_search?q=name.pinyin:hua"curl -XPOST "http://localhost:9200/medcl/folks/_search?q=name.pinyin:ldh"

  中文分词测试:

curl -XPOST "http://localhost:9200/medcl/folks/_search?q=name:刘"curl -XPOST "http://localhost:9200/medcl/folks/_search?q=name:刘德"

注意:用户输入搜索内容,根据正则匹配分成中文、拼音、中文+拼音、中文+拼音+数字+特殊符号等情况进行搜索,如下:

  1. 若是汉字搜索,没有搜索结果,转化为拼音再搜索一次,按拼音搜索还是无结果,则按模糊搜索再搜一次,若是还无结果,可考虑推荐
  2. 若是拼音搜索,没有搜索结果,则按模糊搜索再搜一次
  3. 若是汉字+拼音搜索,暂且按拼音处理
  4. 拼音、数字、特殊字符,暂且按拼音处理

参考:elasticsearch拼音插件安装以及(IK+pinyin使用)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com