您的位置:首页 > 文旅 > 旅游 > 163企业邮箱申请_沈阳妇科检查_市场监督管理局上班时间_百度知道官网入口

163企业邮箱申请_沈阳妇科检查_市场监督管理局上班时间_百度知道官网入口

2025/1/7 18:00:56 来源:https://blog.csdn.net/m0_37609579/article/details/144844441  浏览:    关键词:163企业邮箱申请_沈阳妇科检查_市场监督管理局上班时间_百度知道官网入口
163企业邮箱申请_沈阳妇科检查_市场监督管理局上班时间_百度知道官网入口

背景

在处理科学计算数据时,我们经常需要将不同来源的数据整合并转换成特定格式。本文将分享一个实际案例,展示如何通过理解复杂的数据映射需求,实现正确的文件生成逻辑。

问题描述

我们需要根据一个映射配置文件生成多个数据文件。具体要求如下:

  1. 输入文件:

    • 映射配置文件(CSV格式),包含Row、Col和CombiNo三列
    • 多个数据源文件,存放在不同目录下,包含日期和对应的数据值
  2. 输出要求:

    • 生成特定格式的数据文件
    • 每个时间序列生成固定行数的数据
    • 每行包含66个数值
    • 数值的填充根据映射配置决定

理解数据映射逻辑

起初,这个需求看起来并不复杂。但当我们深入分析时,发现了几个关键点:

  1. 映射关系:

    Row Col CombiNo
    1   1   -999
    1   2   240
    
    • Row表示输出文件中的行号
    • Col表示该行中的列号(1-66)
    • CombiNo表示数据来源,-999表示填0,其他值需要从对应文件获取数据
  2. 数据源文件:

    • 文件路径格式:Weekly_Stats/[场景]/[模型]/*_[模型]_[后缀]_[CombiNo].csv
    • 文件内容:包含Date和NetDrain等列
    • 需要根据日期取对应的NetDrain值

代码实现

让我们看看关键部分的实现:

  1. 文件查找逻辑:
get_combo_data <- function(model, scenario, suffix, combo_no) {base_dir <- file.path("Weekly_Stats", scenario, model)# 构建文件匹配模式if(scenario == "Hindcast") {pattern <- paste0("\\d+_\\d+-.*result_\\d+_", model, "_00_", combo_no, "\\.csv$")} else {pattern <- paste0("\\d+_\\d+CC-.*result_\\d+_", model, "_", suffix, "_", combo_no, "\\.csv$")}files <- list.files(base_dir, pattern=pattern, full.names=TRUE)...
}
  1. 数据生成逻辑:
# 对每个时间序列
for(week_idx in 1:length(dates)) {current_date <- dates[week_idx]# 处理每一行for(row in 1:max_row) {row_values <- numeric(66)row_data <- rc_combi[rc_combi$Row == row,]# 根据映射填充数据for(j in 1:nrow(row_data)) {col <- row_data$Col[j]combo_no <- row_data$ComnbiNo[j]if(combo_no != -999) {combo_data <- combo_data_list[[as.character(combo_no)]]if(!is.null(combo_data)) {week_data <- combo_data[combo_data$Date == current_date,]if(nrow(week_data) > 0) {row_values[col] <- week_data$NetDrain}}}}}
}

关键优化点

在实现过程中,我们注意到几个需要优化的点:

  1. 动态行数:

    • 不应硬编码输出文件的行数
    • 应该从映射配置文件中获取最大Row值
  2. 输出格式:

    • 确保数值格式符合要求(科学计数法)
    • 控制空格数量满足规范

经验总结

  1. 需求理解很重要:

    • 透彻理解映射规则
    • 理清数据来源和格式
    • 确认特殊值的处理方式
  2. 代码实现要注意:

    • 避免硬编码关键参数
    • 保持代码的可维护性
    • 增加必要的错误处理
  3. 验证很关键:

    • 确认文件查找逻辑正确
    • 验证数据映射准确性
    • 检查输出格式是否符合要求

From Data Mapping to File Generation: A Case Study in R

Background

In scientific computing, we often need to integrate data from different sources and convert them into specific formats. This article shares a practical case study demonstrating how to understand complex data mapping requirements and implement correct file generation logic.

Problem Description

We need to generate multiple data files based on a mapping configuration file. The specific requirements are:

  1. Input Files:

    • Mapping configuration file (CSV format) containing Row, Col, and CombiNo columns
    • Multiple source data files in different directories containing dates and corresponding data values
  2. Output Requirements:

    • Generate data files in a specific format
    • Generate fixed number of rows for each time series
    • Each row contains 66 values
    • Values are filled according to the mapping configuration

Understanding Data Mapping Logic

Initially, this requirement seemed straightforward. However, when we analyzed it deeply, we discovered several key points:

  1. Mapping Relationship:

    Row Col CombiNo
    1   1   -999
    1   2   240
    
    • Row indicates the row number in the output file
    • Col indicates the column number in that row (1-66)
    • CombiNo indicates the data source, -999 means fill with 0, other values need to get data from corresponding files
  2. Source Data Files:

    • File path format: Weekly_Stats/[scenario]/[model]/*_[model]_[suffix]_[CombiNo].csv
    • File content: includes Date and NetDrain columns
    • Need to get NetDrain value based on date

Code Implementation

Let’s look at the key parts of the implementation:

  1. File Finding Logic:
get_combo_data <- function(model, scenario, suffix, combo_no) {base_dir <- file.path("Weekly_Stats", scenario, model)# Build file matching patternif(scenario == "Hindcast") {pattern <- paste0("\\d+_\\d+-.*result_\\d+_", model, "_00_", combo_no, "\\.csv$")} else {pattern <- paste0("\\d+_\\d+CC-.*result_\\d+_", model, "_", suffix, "_", combo_no, "\\.csv$")}files <- list.files(base_dir, pattern=pattern, full.names=TRUE)...
}
  1. Data Generation Logic:
# For each time series
for(week_idx in 1:length(dates)) {current_date <- dates[week_idx]# Process each rowfor(row in 1:max_row) {row_values <- numeric(66)row_data <- rc_combi[rc_combi$Row == row,]# Fill data according to mappingfor(j in 1:nrow(row_data)) {col <- row_data$Col[j]combo_no <- row_data$ComnbiNo[j]if(combo_no != -999) {combo_data <- combo_data_list[[as.character(combo_no)]]if(!is.null(combo_data)) {week_data <- combo_data[combo_data$Date == current_date,]if(nrow(week_data) > 0) {row_values[col] <- week_data$NetDrain}}}}}
}

Key Optimization Points

During implementation, we noticed several points that needed optimization:

  1. Dynamic Row Count:

    • Should not hardcode the number of rows in output file
    • Should get maximum Row value from mapping configuration file
  2. Output Format:

    • Ensure numeric format meets requirements (scientific notation)
    • Control number of spaces to meet specifications

Lessons Learned

  1. Requirement Understanding is Crucial:

    • Thoroughly understand mapping rules
    • Clarify data sources and formats
    • Confirm special value handling
  2. Code Implementation Considerations:

    • Avoid hardcoding key parameters
    • Maintain code maintainability
    • Add necessary error handling
  3. Verification is Key:

    • Confirm file finding logic is correct
    • Verify data mapping accuracy
    • Check output format compliance

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com