您的位置:首页 > 文旅 > 旅游 > 哈尔滨网页网站制作_广州软件开发培训机构_百度开户代理_网站seo价格

哈尔滨网页网站制作_广州软件开发培训机构_百度开户代理_网站seo价格

2024/12/23 9:27:36 来源:https://blog.csdn.net/weixin_73404807/article/details/144224473  浏览:    关键词:哈尔滨网页网站制作_广州软件开发培训机构_百度开户代理_网站seo价格
哈尔滨网页网站制作_广州软件开发培训机构_百度开户代理_网站seo价格

目录

  • 证明:切平面过定点的曲面是锥面.

证明:切平面过定点的曲面是锥面.

证明:

方法一:

设曲面 S : r = r ( u , v ) S:\mathbf{r}=\mathbf{r}(u,v) S:r=r(u,v)的切平面过定点 P 0 P_0 P0,其位置向量为 p 0 . \mathbf{p}_0. p0.

r ( u , v ) − p 0 = λ ( u , v ) r u + μ ( u , v ) r v , \mathbf{r}(u,v)-\mathbf{p}_0=\lambda(u,v)\mathbf{r}_u+\mu(u,v)\mathbf{r}_v, r(u,v)p0=λ(u,v)ru+μ(u,v)rv,

其中 λ ( u , v ) , μ ( u , v ) \lambda(u,v),\mu(u,v) λ(u,v),μ(u,v) 是光滑函数.从而,
r u = λ u r u + λ r u u + μ u r v + μ r u v , r v = λ v r u + λ r u v + μ v r v + μ r v v . \mathbf{r}_u=\lambda_u\mathbf{r}_u+\lambda\mathbf{r}_{uu}+\mu_u\mathbf{r}_v+\mu\mathbf{r}_{uv},\quad\mathbf{r}_v=\lambda_v\mathbf{r}_u+\lambda\mathbf{r}_{uv}+\mu_v\mathbf{r}_v+\mu\mathbf{r}_{vv}. ru=λuru+λruu+μurv+μruv,rv=λvru+λruv+μvrv+μrvv.
将以上两式与 n 作内积,有
λ L + μ M = 0 , λ M + μ N = 0. \lambda L+\mu M=0,\\\lambda M+\mu N=0. λL+μM=0,λM+μN=0.

λ ( L N − M 2 ) = 0 , μ ( L N − M 2 ) = 0. \lambda(LN-M^2)=0,\\\mu(LN-M^2)=0. λ(LNM2)=0,μ(LNM2)=0.
由于 λ ( u , v ) , μ ( u , v ) \lambda(u,v),\mu(u,v) λ(u,v),μ(u,v)只在一点同时为0,故 L N − M 2 = 0. LN-M^2=0. LNM2=0.从而,Gauss 曲率 K = L N − M 2 E G − F 2 = 0. K=\frac{LN-M^2}{EG-F^2}=0. K=EGF2LNM2=0.
S S S上的点 P P P是非脐点,则在它的一个小邻域内, S S S无脐点.

对应于两个主方向量场,在更小的邻域内, S S S 有正交参数,仍记为 ( u , v ) . ( u, v) . (u,v). (对应的参数曲线是正交曲率线)

而由 K = 0 K=0 K=0,此小邻域内每点都是严格抛物点(非平点), 只沿一个方向法曲率为 0. 故其中一族参数曲线是曲率线且是渐近线.

而沿着方向 r ( u , v ) − p 0 \mathbf{r}(u,v)-\mathbf{p}_0 r(u,v)p0,法曲率

k n ( r ( u , v ) − p 0 ) = L λ 2 + 2 M λ μ + N μ 2 E λ 2 + 2 F λ μ + G μ 2 = 0. k_n(\mathbf{r}(u,v)-\mathbf{p}_0)=\frac{L\lambda^2+2M\lambda\mu+N\mu^2}{E\lambda^2+2F\lambda\mu+G\mu^2}=0. kn(r(u,v)p0)=Eλ2+2Fλμ+Gμ2Lλ2+2Mλμ+Nμ2=0.

因此,这族曲率渐近线的切方向都过同一定点 P 0 . P_0. P0.由习题二 9 (1),它们必是一束直线.

现在设 S S S上点 P P P是脐点,则它是平点.若存在 P P P的一个邻域, S S S上每点都是平点.则 S S S在此邻域内是平面的一部分.若 P P P不存在这样的邻域,则在 P P P的附近脐点的轨迹至多是一些曲线,不能决定曲面的形状。
综上所述,曲面 S S S上每点都在曲面上的一条直线上且所有这些直线过定点,

: S :S :S 是锥面.

方法二:

设曲面 S S S的所有切平面过定点 P 0 . P_0. P0.取曲面上任意点 P ≠ P 0 . P\neq P_0. P=P0.设点 P 0 P_0 P0与过点 P P P法线张成的平面为 Π \Pi Π,而曲面 S S S与平面 Π \Pi Π的相交曲线为 C . C. C.对于 C C C上任意一点 Q Q Q,直线 P ‾ 0 Q \overline P_0Q P0Q在平面 II 中.

而由假设, S S S的切平面都过 P 0 P_0 P0,故在 Q Q Q点附近曲线 C C C只在直线 P ‾ 0 Q \overline P_0Q P0Q的一侧.,点 Q Q Q是平面 Π \Pi Π中曲线 C C C的高度函数的极小值点,故直线 P ‾ 0 Q \overline P_{0}Q P0Q是曲线 C C C在点 Q Q Q的切线.因此,曲线 C C C 必是直线.因此 , S ,S ,S 由过定点的直线构成,是锥面.

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com