Exercise 2.71
Suppose we have a Huffman tree for an alphabet of n symbols, and that the relative frequencies of the symbols are 1,2,4, . . . ,2n 1. Sketch the tree for n = 5; for n = 10. In such a tree (for general n) how many bits are required to encode the most frequent symbol? The least frequent symbol?
这道题挺简单的,只要明白了霍夫曼编码的逻辑,自己画一下就可以了,这会是一种非常不平衡的树,除了权重最低的两个符号构成了一个完整的子树,其他的子树都只有一个叶子,n=5 时如下图所示,n=10太多了就不画了,跟这个类似。
可以看出,当有 n 个符号时,使用频率最高的符号只需要1位就可以表示,频率最低的则需要 n-1 位。