您的位置:首页 > 健康 > 养生 > 杭州平面设计_网站免费大全_什么是优化_市场调研方法有哪些

杭州平面设计_网站免费大全_什么是优化_市场调研方法有哪些

2024/10/13 3:49:32 来源:https://blog.csdn.net/weixin_42553583/article/details/142725359  浏览:    关键词:杭州平面设计_网站免费大全_什么是优化_市场调研方法有哪些
杭州平面设计_网站免费大全_什么是优化_市场调研方法有哪些

大家好,我是刘明,明志科技创始人,华为昇思MindSpore布道师。
技术上主攻前端开发、鸿蒙开发和AI算法研究。
努力为大家带来持续的技术分享,如果你也喜欢我的文章,就点个关注吧

黑塞矩阵

在介绍MindSpore提供的计算黑塞矩阵的方法之前,首先对黑塞矩阵进行介绍。

黑塞矩阵可以由梯度操作 ∇ \nabla 和广度梯度操作 ∂ \partial 的复合得到,即
∇ ∘ ∂ : F n 1 ⟶ F n n ⟶ F n × n n \nabla \circ \partial: F_{n}^{1} \longrightarrow F_{n}^{n} \longrightarrow F_{n \times n}^{n} :Fn1FnnFn×nn
将该复合操作用于f,得到,
f ⟼ ∇ f ⟼ J ∇ f f \longmapsto \nabla f \longmapsto J_{\nabla f} ffJf
可以得到黑塞矩阵,
H f = [ ∂ ( ∇ 1 f ) ∂ x 1 ∂ ( ∇ 1 f ) ∂ x 2 … ∂ ( ∇ 1 f ) ∂ x n ∂ ( ∇ 2 f ) ∂ x 1 ∂ ( ∇ 2 f ) ∂ x 2 … ∂ ( ∇ 2 f ) ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ ( ∇ n f ) ∂ x 1 ∂ ( ∇ n f ) ∂ x 2 … ∂ ( ∇ n f ) ∂ x n ] = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 2 ∂ x 1 … ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 2 … ∂ 2 f ∂ x n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x n … ∂ 2 f ∂ x n 2 ] \begin{split}H_{f} = \begin{bmatrix} \frac{\partial (\nabla _{1}f)}{\partial x_{1}} &\frac{\partial (\nabla _{1}f)}{\partial x_{2}} &\dots &\frac{\partial (\nabla _{1}f)}{\partial x_{n}} \\ \frac{\partial (\nabla _{2}f)}{\partial x_{1}} &\frac{\partial (\nabla _{2}f)}{\partial x_{2}} &\dots &\frac{\partial (\nabla _{2}f)}{\partial x_{n}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial (\nabla _{n}f)}{\partial x_{1}} &\frac{\partial (\nabla _{n}f)}{\partial x_{2}} &\dots &\frac{\partial (\nabla _{n}f)}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial ^2 f}{\partial x_{1}^{2}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{1}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{2}} &\frac{\partial ^2 f}{\partial x_{2}^{2}} &\dots &\frac{\partial ^2 f}{\partial x_{n} \partial x_{2}} \\ \vdots &\vdots &\ddots &\vdots \\ \frac{\partial ^2 f}{\partial x_{1} \partial x_{n}} &\frac{\partial ^2 f}{\partial x_{2} \partial x_{n}} &\dots &\frac{\partial ^2 f}{\partial x_{n}^{2}} \end{bmatrix}\end{split} Hf= x1(1f)x1(2f)x1(nf)x2(1f)x2(2f)x2(nf)xn(1f)xn(2f)xn(nf) = x122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn22f
易见,黑塞矩阵是一个实对称矩阵。

黑塞矩阵的应用:利用黑塞矩阵,我们可以探索神经网络在某点处的曲率,为训练是否收敛提供数值依据。

计算黑塞矩阵

在MindSpore中,我们可以通过jacfwd和jacrev的任意组合来计算黑塞矩阵。

Din = 32
Dout = 16
weight = ops.randn(Dout, Din)
bias = ops.randn(Dout)
x = ops.randn(Din)hess1 = jacfwd(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess2 = jacfwd(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess3 = jacrev(jacfwd(forecast, grad_position=2), grad_position=2)(weight, bias, x)
hess4 = jacrev(jacrev(forecast, grad_position=2), grad_position=2)(weight, bias, x)np.allclose(hess1.asnumpy(), hess2.asnumpy())
np.allclose(hess2.asnumpy(), hess3.asnumpy())
np.allclose(hess3.asnumpy(), hess4.asnumpy())

计算黑塞-向量积

计算黑塞-向量积(Hessian-vector product, hvp)的最直接的方法计算一个完整的黑塞矩阵,并将其与向量进行点积运算。但MindSpore提供了更好的方法,使得不需要计算一个完整的黑塞矩阵,便可以计算黑塞-向量积。下面我们介绍计算黑塞-向量积的两种方法。

  • 将反向模式自动微分与反向模式自动微分组合。

  • 将反向模式自动微分与前向模式自动微分组合。

下面先介绍,在MindSpore中,如何使用反向模式自动微分与前向模式自动微分组合的方式计算黑塞-向量积,

def hvp_revfwd(f, inputs, vector):return jvp(grad(f), inputs, vector)[1]def f(x):return x.sin().sum()inputs = ops.randn(128)
vector = ops.randn(128)result_hvp_revfwd = hvp_revfwd(f, inputs, vector)
print(result_hvp_revfwd.shape)

如果前向自动微分不能满足要求,我们可以使用反向模式自动微分与反向模式自动微分组合的方式来计算黑塞-向量积,

def hvp_revrev(f, inputs, vector):_, vjp_fn = vjp(grad(f), *inputs)return vjp_fn(*vector)result_hvp_revrev = hvp_revrev(f, (inputs,), (vector,))
print(result_hvp_revrev[0].shape)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com