您的位置:首页 > 健康 > 美食 > 猫狗识别—静态图像识别

猫狗识别—静态图像识别

2024/12/23 16:30:12 来源:https://blog.csdn.net/2302_77874605/article/details/139934809  浏览:    关键词:猫狗识别—静态图像识别

猫狗识别—静态图像识别

  • 1. 导入必要的库:
  • 2. 设置数据目录和模型路径:
  • 3. 定义图像转换
  • 4. 使用GPU
  • 5. 加载没有预训练权重的ResNet模型
  • 6. 创建Tkinter窗口:
  • 7.定义选择图片的函数:
  • 8.定义预测图片的函数:
  • 9.退出程序的函数:
  • 10.创建按钮:
  • 11.运行Tkinter事件循环:
  • 12. 完整代码+运行结果
    • 完整代码:
    • 运行结果:

1. 导入必要的库:

import torch
import numpy as np
import torchvision
from os import path
from torchvision import datasets, models
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import os
import tkinter as tk
from PIL import Image, ImageTk
from tkinter import filedialog
import cv2
import subprocess
from tkinter import messagebox

2. 设置数据目录和模型路径:

  • data_dir变量设置了数据目录的路径,model_path变量设置了预训练模型的路径。
#设置数据目录和模型路径
data_dir = r'data'
model_path = 'cat_dog_classifier.pth'

3. 定义图像转换

data_transforms = {'test': transforms.Compose([transforms.Resize(size=224),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}

4. 使用GPU

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

5. 加载没有预训练权重的ResNet模型

model = models.resnet50(pretrained=False)  # 使用pretrained=False
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model.load_state_dict(torch.load(model_path))
model = model.to(device)
model.eval()

6. 创建Tkinter窗口:

#创建Tkinter窗口
root = tk.Tk()
root.title('图像识别猫狗')
root.geometry('800x650')image = Image.open("图像识别背景.gif")
image = image.resize((800, 650))  # 调整背景图片大小
photo1 = ImageTk.PhotoImage(image)
canvas = tk.Label(root, image=photo1)
canvas.pack()#添加文本标签来显示识别结果
result_label = tk.Label(root, text="", font=('Helvetica', 18))
result_label.place(x=280, y=450)#原始图像标签
image_label = tk.Label(root, text="", image="")
image_label.place(x=210, y=55)#保存用户选择的图片路径
selected_image_path = None#加载测试数据集
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x),transform=data_transforms[x])for x in ['test']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=1, shuffle=False)for x in ['test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['test']}
class_names = image_datasets['test'].classes  # 定义class_names#加载Haar特征级联分类器
cat_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalcatface.xml')
dog_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt2.xml')

7.定义选择图片的函数:

#定义一个函数来打开文件选择对话框并显示图片
def choose_image():global selected_image_pathfile_path = filedialog.askopenfilename(initialdir=data_dir, title="选择图片",filetypes=(("图片文件", "*.png *.jpg *.jpeg *.gif *.bmp"), ("所有文件", "*.*")))if file_path:selected_image_path = file_pathimg = Image.open(file_path)img = img.resize((400, 350), Image.LANCZOS)imgTk = ImageTk.PhotoImage(img)image_label.config(image=imgTk)image_label.image = imgTk

8.定义预测图片的函数:

#定义一个函数来使用模型进行预测
def predict_image():global selected_image_pathif selected_image_path:img = Image.open(selected_image_path)transform = data_transforms['test']img_tensor = transform(img).unsqueeze(0).to(device)with torch.no_grad():outputs = model(img_tensor)_, preds = torch.max(outputs, 1)prediction = class_names[preds.item()]  # 使用str()来将整数转换为字符串result_label.config(text=f"检测到的结果为: {prediction}")# 使用OpenCV在原始图像上绘制矩形框img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)if prediction == 'cats':cats = cat_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))for (x, y, w, h) in cats:cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框if len(cats) > 0:cv2.imwrite("detected_cats_image.jpg", img_cv2)  # 保存带有猫矩形框的图像img_detected_cats = Image.open("detected_cats_image.jpg").resize((350, 300), Image.LANCZOS)imgTk_detected_cats = ImageTk.PhotoImage(img_detected_cats)image_label.config(image=imgTk_detected_cats)image_label.image = imgTk_detected_catselif prediction == 'dogs':dogs = dog_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))for (x, y, w, h) in dogs:cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框if len(dogs) > 0:cv2.imwrite("detected_dogs_image.jpg", img_cv2)  # 保存带有狗矩形框的图像img_detected_dogs = Image.open("detected_dogs_image.jpg").resize((350, 300), Image.LANCZOS)imgTk_detected_dogs = ImageTk.PhotoImage(img_detected_dogs)image_label.config(image=imgTk_detected_dogs)image_label.image = imgTk_detected_dogselse:print("未检测到猫或狗。")# 显示修改后的图像img = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)img = cv2.resize(img, (400, 350))imgTk = ImageTk.PhotoImage(image=Image.fromarray(img))image_label.config(image=imgTk)image_label.image = imgTkelse:print("请先选择一张图片。")

9.退出程序的函数:

#退出程序的函数
def close():subprocess.Popen(["python","主页面.py"])root.destroy()

10.创建按钮:

#创建按钮
image = Image.open("选择图片.gif")  # 加载一张图片
photo2 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo2, width=200, height=32, command=choose_image)
bt1.place(x=60, y=530)image = Image.open("开始识别.gif")  # 加载一张图片
photo3 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo3, width=200, height=32, command=predict_image)
bt1.place(x=300, y=530)image = Image.open("退出程序.gif")  # 加载一张图片
photo4 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo4, width=200, height=32, command=close)
bt1.place(x=535, y=530)

11.运行Tkinter事件循环:

#运行Tkinter事件循环
root.mainloop()

12. 完整代码+运行结果

完整代码:

import torch
import numpy as np
import torchvision
from os import path
from torchvision import datasets, models
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import os
import tkinter as tk
from PIL import Image, ImageTk
from tkinter import filedialog
import cv2
import subprocess
from tkinter import messagebox# 设置数据目录和模型路径
data_dir = r'data'
model_path = 'cat_dog_classifier.pth'# 定义图像转换
data_transforms = {'test': transforms.Compose([transforms.Resize(size=224),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 使用GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 加载没有预训练权重的ResNet模型
model = models.resnet50(pretrained=False)  # 使用pretrained=False
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model.load_state_dict(torch.load(model_path))
model = model.to(device)
model.eval()# 创建Tkinter窗口
root = tk.Tk()
root.title('图像识别猫狗')
root.geometry('800x650')image = Image.open("图像识别背景.gif")
image = image.resize((800, 650))  # 调整背景图片大小
photo1 = ImageTk.PhotoImage(image)
canvas = tk.Label(root, image=photo1)
canvas.pack()# 添加文本标签来显示识别结果
result_label = tk.Label(root, text="", font=('Helvetica', 18))
result_label.place(x=280, y=450)# 原始图像标签
image_label = tk.Label(root, text="", image="")
image_label.place(x=210, y=55)# 保存用户选择的图片路径
selected_image_path = None# 加载测试数据集
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x),transform=data_transforms[x])for x in ['test']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=1, shuffle=False)for x in ['test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['test']}
class_names = image_datasets['test'].classes  # 定义class_names# 加载Haar特征级联分类器
cat_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalcatface.xml')
dog_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt2.xml')# 定义一个函数来打开文件选择对话框并显示图片
def choose_image():global selected_image_pathfile_path = filedialog.askopenfilename(initialdir=data_dir, title="选择图片",filetypes=(("图片文件", "*.png *.jpg *.jpeg *.gif *.bmp"), ("所有文件", "*.*")))if file_path:selected_image_path = file_pathimg = Image.open(file_path)img = img.resize((400, 350), Image.LANCZOS)imgTk = ImageTk.PhotoImage(img)image_label.config(image=imgTk)image_label.image = imgTk# 定义一个函数来使用模型进行预测
def predict_image():global selected_image_pathif selected_image_path:img = Image.open(selected_image_path)transform = data_transforms['test']img_tensor = transform(img).unsqueeze(0).to(device)with torch.no_grad():outputs = model(img_tensor)_, preds = torch.max(outputs, 1)prediction = class_names[preds.item()]  # 使用str()来将整数转换为字符串result_label.config(text=f"检测到的结果为: {prediction}")# 使用OpenCV在原始图像上绘制矩形框img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)if prediction == 'cats':cats = cat_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))for (x, y, w, h) in cats:cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框if len(cats) > 0:cv2.imwrite("detected_cats_image.jpg", img_cv2)  # 保存带有猫矩形框的图像img_detected_cats = Image.open("detected_cats_image.jpg").resize((350, 300), Image.LANCZOS)imgTk_detected_cats = ImageTk.PhotoImage(img_detected_cats)image_label.config(image=imgTk_detected_cats)image_label.image = imgTk_detected_catselif prediction == 'dogs':dogs = dog_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))for (x, y, w, h) in dogs:cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框if len(dogs) > 0:cv2.imwrite("detected_dogs_image.jpg", img_cv2)  # 保存带有狗矩形框的图像img_detected_dogs = Image.open("detected_dogs_image.jpg").resize((350, 300), Image.LANCZOS)imgTk_detected_dogs = ImageTk.PhotoImage(img_detected_dogs)image_label.config(image=imgTk_detected_dogs)image_label.image = imgTk_detected_dogselse:print("未检测到猫或狗。")# 显示修改后的图像img = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)img = cv2.resize(img, (400, 350))imgTk = ImageTk.PhotoImage(image=Image.fromarray(img))image_label.config(image=imgTk)image_label.image = imgTkelse:print("请先选择一张图片。")# 退出程序的函数
def close():subprocess.Popen(["python","主页面.py"])root.destroy()# 创建按钮
image = Image.open("选择图片.gif")  # 加载一张图片
photo2 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo2, width=200, height=32, command=choose_image)
bt1.place(x=60, y=530)image = Image.open("开始识别.gif")  # 加载一张图片
photo3 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo3, width=200, height=32, command=predict_image)
bt1.place(x=300, y=530)image = Image.open("退出程序.gif")  # 加载一张图片
photo4 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo4, width=200, height=32, command=close)
bt1.place(x=535, y=530)# 运行Tkinter事件循环
root.mainloop()

运行结果:

在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com