您的位置:首页 > 健康 > 养生 > 简单logo设计图片_html5网页设计作业免费_windows优化大师的功能_美国疫情最新消息

简单logo设计图片_html5网页设计作业免费_windows优化大师的功能_美国疫情最新消息

2025/1/6 20:21:34 来源:https://blog.csdn.net/Sherlily/article/details/144898797  浏览:    关键词:简单logo设计图片_html5网页设计作业免费_windows优化大师的功能_美国疫情最新消息
简单logo设计图片_html5网页设计作业免费_windows优化大师的功能_美国疫情最新消息

论文网址:A ConvNet for the 2020s | IEEE Conference Publication | IEEE Xplore

论文代码:GitHub - facebookresearch/ConvNeXt: Code release for ConvNeXt model

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Modernizing a ConvNet: A Roadmap

2.3.1. Training Techniques

2.3.2. Macro Design

2.3.3. ResNeXt-Ify

2.3.4. Inverted Bottleneck

2.3.5. Large Kernel Sizes

2.3.6. Micro Design

2.4. Empirical Evaluations on ImageNet

2.4.1. Results

2.4.2. Isotropic ConvNeXt vs. ViT

2.5. Empirical Evaluation on Downstream Tasks

2.6. Related Work

2.7. Conclusions

3. 知识补充

3.1. Inductive bias

4. Reference


1. 心得

(1)这论文标题顶上空那么多干啥,给我都拿来写了

(2)凌晨四点新开一篇论文!如果世界上没有ddl该多好,可以无忧无虑地看论文

(3)这东西居然这么新!!大为震惊,CNN在22年还能创新的吗。看了眼作者机构基本都是facebook的,打扰了。为什么我总是在打扰。可能我实在太卑微了

(4)该说不说这种文章英文读起来会舒服很多,感觉更有文学性和可读性,推荐阅读英文,会有不同的感受。不过我感觉很多也因为这些作者普遍会自信一些(因为就是很厉害,不会很胆怯),因此在学术论文的表达上也很大胆,不会非常枯燥

(5)不是,怎么看到后面感觉像个调参的

2. 论文逐段精读

2.1. Abstract

        ①They aim to explore the possibility of pure ConvNet

2.2. Introduction

        ①The biggest challenge for ViT is the quadratic complexity with respect to the input size

        ②They aim to identify how do design decisions in Transformers impact ConvNets' performance?

precipitate  vt.加速(坏事的发生);使突然陷入(某种状态);使…突然降临  adj.仓促的;鲁莽的;草率的  n.沉淀物;析出物

odyssey  n.漫长而充满风险的历程;艰苦的跋涉

2.3. Modernizing a ConvNet: A Roadmap

        ①They apply ResNet-50 / Swin-T with 4.5e9 FLOPs to present results

        ②Performance of ConvNeXt on ImageNet under different design:

        ③Comparison diagram on ImageNet:

2.3.1. Training Techniques

        ①Training techniques such as optimizer changing will actually enhance the performance of CNN

2.3.2. Macro Design

        ①Adjusting the block numbers each stage of ResNet-50 from (3, 4, 6, 3) to (3, 3, 9, 3) for aligning FLOPs with Swin-T

        ②They changed kernels in ResNet from 7 * 7 with stride 2 to 4 * 4 with stride 4 

2.3.3. ResNeXt-Ify

        ①Adding channels from 64 to 96 (same as Swin-T), enhancing accuracy and increasing 5.3 GFLOPs

2.3.4. Inverted Bottleneck

        ①Bottleneck design:

where (a) is ResNeXt block, (b) is their inverted bottleneck,(c) is inverted bottleneck with block position changing

        ②Inverted bottleneck design decreases to 4.6 GFLOPs

2.3.5. Large Kernel Sizes

        ①Increase kernel size to 7*7

        ②From (b) to (c), the GFLOPs decrease to 4.1 GFLPs

2.3.6. Micro Design

        ①Replace ReLU by GELU

        ②Remove 2 GELU to get less activation function:

        ③Reduce BatchNorm (BN) layers and replace one by Layer Normalization (LN)

        ④Spatial downsampling by residual 2*2 block 

        ⑤The FLOPs, #params., throughput, and memory use of Swin Transformer and ConvNeXt are similar, but ConvNeXt does not need shifted window attention or relative position biases

2.4. Empirical Evaluations on ImageNet

        ①All the configurations:

ConvNeXt-TC=(96,192,384,768),B=(3,3,9,3)
ConvNeXt-SC=(96,192,384,768),B=(3,3,27,3)
ConvNeXt-BC=(128,256,512,1024),B=(3,3,27,3)
ConvNeXt-LC=(192,384,768,1536),B=(3,3,27,3)
ConvNeXt-XLC=(256,512,1024,2048),B=(3,3,27,3)

2.4.1. Results

        ①Performance table:

2.4.2. Isotropic ConvNeXt vs. ViT

        ①Remove downsampling structure:

2.5. Empirical Evaluation on Downstream Tasks

        ①Performance on COCO:

        ②Performance on ADE20K:

2.6. Related Work

        ①Other models are larger

2.7. Conclusions

        ~

3. 知识补充

3.1. Inductive bias

(1)参考学习:【机器学习】浅谈 归纳偏置 (Inductive Bias)-CSDN博客

4. Reference

Liu, Z. et al. (2022) A ConvNet for the 2020s, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA.

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com