您的位置:首页 > 健康 > 养生 > 欧洲服务器免费ip地址_新闻头条今日要闻最新_网购平台推广方案_百度推广费2800元每年都有吗

欧洲服务器免费ip地址_新闻头条今日要闻最新_网购平台推广方案_百度推广费2800元每年都有吗

2024/12/23 14:09:20 来源:https://blog.csdn.net/weixin_44855046/article/details/144287133  浏览:    关键词:欧洲服务器免费ip地址_新闻头条今日要闻最新_网购平台推广方案_百度推广费2800元每年都有吗
欧洲服务器免费ip地址_新闻头条今日要闻最新_网购平台推广方案_百度推广费2800元每年都有吗

【1】引言

前序已经学习了常规的图像读取操作和图像保存技巧,相关文章链接为:

python学opencv|读取图像-CSDN博客

python学opencv|读取图像(二)保存彩色图像-CSDN博客

今天我们更近一步,学习放大和缩小图像的技巧,力求掌握cv.resize()函数的用法。

【2】opencv官方教程

点击系下述链接,可以直达官网教程:

OpenCV: Geometric Image Transformations

在官网有很多函数,今天主要学习下述内容:

065adec7002941779e00008e46c1f184.png

图1

其实这里讲的比较简单,综合起来就是:

resize(src, dst, dst.size(), fx, fy, interpolation)

src,输入图像,必须有,这是修改大小的初始条件;

dst,输出图像,如果不为0,大小和dsize一致,否则就,通过输入计算fx和fy;输出图像和输入图像的类型一致;

dsize,输出图像的大小,如果=0或者none,就用fx和fy来修改图像;

fx,水平方向放大因子;

fy,竖直方向放大因子;

interpolation,插值方法。

【3】代码测试

在上述基础上,输入以下代码做测试:

import cv2 #引入CV模块# 读取图片
image = cv2.imread('opencv-picture-001.png')# 定义放大因子
scale_factor = 2# 放大图片,使用立方插值
scaled_image = cv2.resize(image, None, fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值# 保存结果
cv2.imwrite('scaled_image-22-INTER_CUBIC.png', scaled_image)# 显示结果
cv2.imshow('Scaled Image', scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里,使用的原图像为opencv-picture-001.png:

615820ec82c948b89ac89c5a01b0073f.png

图2

用了两倍的放大因子:scale_factor=2

使用的插值方法为:cv2.INTER_CUBIC

运行后的输出图像为:

80597c78e7ce4654aa3698d5758b9e30.png

图3

上传网站后好像图2和图3没有区别,我们看一下它们的大小:

44b8fc4406e5459da0b50069621fff84.png

图4

可见图3相对于图2确实是分别率扩大了两倍。

【4】插值方法测试

在上述测试案例上,我们获得的放大图像在上传CSDN网站后依然清晰。

实际上改变图像大小有多种插值方法,相关链接为:

OpenCV: Geometric Image Transformations

我们主要研究一下前面三种:

707b231009354ed5880095158d613390.png

图5

更新插值和保存图像代码为:

# 放大图片,使用不同插值方法
scaled_image = cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值
scaled_image1= cv2.resize(image, None, fx=0.2, fy=2.2, interpolation=cv2.INTER_NEAREST)
scaled_image2= cv2.resize(image, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR )
# 保存结果
cv2.imwrite('scaled_image-22-INTER_CUBIC.png', scaled_image)
cv2.imwrite('scaled_image-22-INTER_NEAREST.png', scaled_image1)
cv2.imwrite('scaled_image-22-INTER_LINEAR.png', scaled_image2)

获得的cv2.INTER_NEAREST和cv2.INTER_LINEAR插值图像为:

24d02cbaf3ca47c4b0d33d329fa0e3f1.png

图6  cv2.INTER_NEAREST

图6是使用NEAREST插值方法,横向缩小为原来的0.2倍,竖向扩大为原来的2.2倍后的效果。

7bb1c76233c94e3b8152c38b2ef337cf.png

图7 cv2.INTER_LINEAR

图7是使用 LINEAR插值方法,横向和竖向均缩小为原来的0.5倍后的图像。

之后我们继续修改,使图像的放大因子保持一致:

scaled_image = cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值
scaled_image1= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_NEAREST)
scaled_image2= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR )
# 保存结果
cv2.imwrite('scaled_image-220-INTER_CUBIC.png', scaled_image)
cv2.imwrite('scaled_image-220-INTER_NEAREST.png', scaled_image1)
cv2.imwrite('scaled_image-220-INTER_LINEAR.png', scaled_image2)

此时获得的图像为:

3fceec8701574e22a492cf34bb55b39f.png8ffa028dbbbf45d2903c91fcc4171270.png04485e4573a14032b178cebdce8e7499.png

图8 从上到下CUBIC-NEAREST-LINEAR

相对来说,CUBIC插值法获得的图像清晰度最好。

此时的完整代码为:

import cv2 #引入CV模块# 读取图片
image = cv2.imread('opencv-picture-001.png')# 定义放大因子
scale_factor = 2# 放大图片,使用不同插值方法
scaled_image = cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #INTER_CUBIC插值
scaled_image1= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_NEAREST)
scaled_image2= cv2.resize(image, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR )
# 保存结果
cv2.imwrite('scaled_image-220-INTER_CUBIC.png', scaled_image)
cv2.imwrite('scaled_image-220-INTER_NEAREST.png', scaled_image1)
cv2.imwrite('scaled_image-220-INTER_LINEAR.png', scaled_image2)
# 或者显示结果
cv2.imshow('Scaled Image', scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

【5】总结

探索了使用python+opencv放大和缩小图像的方法。

经过对比不同的插值方法,发现CUBIC插值法获得的图像清晰度最好。

 

 

 

 

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com