您的位置:首页 > 健康 > 养生 > 小程序开发平台售后有保障_开源cms管理系统_百度识图搜索_野狼seo团队

小程序开发平台售后有保障_开源cms管理系统_百度识图搜索_野狼seo团队

2025/4/28 7:21:55 来源:https://blog.csdn.net/CassieMMK/article/details/144197173  浏览:    关键词:小程序开发平台售后有保障_开源cms管理系统_百度识图搜索_野狼seo团队
小程序开发平台售后有保障_开源cms管理系统_百度识图搜索_野狼seo团队

 loss如果大,训练资料没有学好,此时有两个可能:

1.model bias太过简单(找不到loss低的function)。

解决办法:增加输入的feacture,设一个更大的model,也可以用deep learning增加弹性。

2.optimization做得不好(合适的function确实存在但是无法正确选择出来)。
如何判断是上面的哪种情况?
  • 比较图像信息。(例如如果20层的network已经可以做得很好有很低的loss了,56层的明显错误便并不是model bias弹性不够导致的,是optimization做得不好)
  • 可以先看比较浅的network(model),因为它们不太会有optimization的问题。
  • 如果深层的model并没有包含更小的数据差,那就是optimization的问题。(例如↓)

 看testing data

1.依旧很小,那很完美。
2.如果training data的loss小(并且确定model bias没有问题,optimization够大了)但是testing data的loss大有可能是overfitting。

  • 上面是个特例极端情况。
  • 正常来说:没有给足够的资料做为训练,因为model自由度很大就会导致overfitting。
解决方法:

1.增加训练资料。

2.data augmentation(用自己对问题的理解自己创造一些资料)。

注意:不能随便做,要是有道理的数据。根据对资料的特性,基于自己的理解,增加data augmentation。

3.缩减弹性,写极限。

比如:减少神经元数目 或者 让model公用参数 或者 用比较少的features 或者 early stopping 或者 regularization 或者 drop out。

但是注意不要给模型太多的限制。限制太大了在测试上就没有好结果,也就导致了model bias。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com